Metallic Nanostructures (eBook)

From Controlled Synthesis to Applications

Yujie Xiong, Xianmao Lu (Herausgeber)

eBook Download: PDF
2014 | 2015
XI, 301 Seiten
Springer International Publishing (Verlag)
978-3-319-11304-3 (ISBN)

Lese- und Medienproben

Metallic Nanostructures -
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book details the design for creation of metal nanomaterials with optimal functionality for specific applications. The authors describe how to make desired metal nanomaterials in a wet lab. They include an overview of applications metal nanomaterials can be implemented in and address the fundamentals in the controlled synthesis of metal nanostructures.

Yujie Xiong received his B.S. in chemical physics in 2000 and Ph.D. in inorganic chemistry in 2004 (with Professor Yi Xie), both from the University of Science and Technology of China (USTC).  After four-year training with Professors Younan Xia and John A. Rogers, he joined the National Nanotechnology Infrastructure Network (NSF-NNIN) at Washington University in St. Louis as the Principal Scientist and Lab Manager.  Starting from 2011, he is a Professor of Chemistry at the USTC.  He has published 88 papers with over 8,000 citation (H-index 46).  His research interests include synthesis, fabrication and assembly of inorganic materials for energy and environmental applications.

Xianmao Lu is an assistant professor in the Department of Chemical & Biomolecular Engineering at National University of Singapore (NUS). Before he joined NUS, he was a postdoctoral research fellow at University of Washington and Washington University. He received his PhD in Chemical Engineering from the University of Texas at Austin, where he started his research in nanomaterials. His current research interest is mainly on shape-selective growth of noble metal nanocrystals and understanding of their fundamental properties.

Yujie Xiong received his B.S. in chemical physics in 2000 and Ph.D. in inorganic chemistry in 2004 (with Professor Yi Xie), both from the University of Science and Technology of China (USTC).  After four-year training with Professors Younan Xia and John A. Rogers, he joined the National Nanotechnology Infrastructure Network (NSF-NNIN) at Washington University in St. Louis as the Principal Scientist and Lab Manager.  Starting from 2011, he is a Professor of Chemistry at the USTC.  He has published 88 papers with over 8,000 citation (H-index 46).  His research interests include synthesis, fabrication and assembly of inorganic materials for energy and environmental applications.Xianmao Lu is an assistant professor in the Department of Chemical & Biomolecular Engineering at National University of Singapore (NUS). Before he joined NUS, he was a postdoctoral research fellow at University of Washington and Washington University. He received his PhD in Chemical Engineering from the University of Texas at Austin, where he started his research in nanomaterials. His current research interest is mainly on shape-selective growth of noble metal nanocrystals and understanding of their fundamental properties.

Preface 5
Contents 7
Contributors 8
Editors Biography 10
Chapter-1 11
Metallic Nanostructures: Fundamentals 11
1.1 Metallic Nanostructures: General Introduction and Historical Background 11
1.1.1 General Introduction 11
1.1.2 Classification of Metallic Nanostructures 12
1.1.3 Historical Background of Metallic Nanostructures 13
1.2 Fundamental Properties of Metallic Nanostructures 15
1.2.1 Optical Properties 15
1.2.2 Catalytic Properties 16
1.2.3 Magnetic Properties 17
1.3 General Methods for the Synthesis of Metallic Nanostructures 18
1.3.1 Gas- and Solid-Phase Methods 19
1.3.2 Wet Chemical (Liquid Phase) Methods 20
1.3.2.1 Chemical Reduction and Thermal Decomposition 21
1.3.2.2 Hydrothermal and Solvothermal Method 22
1.3.2.3 Microwave Method 22
1.3.2.4 Radiolytic and Photochemical Method 23
1.3.2.5 Electrochemical Method 24
1.3.2.6 Sonochemical Method 24
1.3.2.7 Reversed Micelle Method 25
1.3.2.8 Multiphase Process 25
1.3.2.9 Template-Based Syntheses 26
1.4 Characterizations of Metallic Nanostructures 28
1.4.1 Techniques for Morphological Analysis 28
1.4.1.1 Transmission Electron Microscope 28
1.4.1.2 Scanning Electron Microscope (SEM) 30
1.4.1.3 Atomic Force Microscope (AFM) 30
1.4.2 Techniques for Crystal Structural Analysis 32
1.4.2.1 X-Ray Diffraction (XRD) 32
1.4.2.2 Selected Area Electron Diffraction (SAED) 33
1.4.3 Techniques for Composition Analysis 34
1.4.3.1 X-ray Photoelectron Spectroscopy (XPS) 34
1.4.3.2 Energy-Dispersive X-Ray Spectroscopy 35
1.4.3.3 Inductively Coupled Plasma Atomic Emission Spectroscopy/Mass Spectrometry 36
1.5 Representative Examples for Shape-Controlled Synthesis of Metallic Nanostructures 37
1.5.1 Seed-Mediated Growth Methods 37
1.5.2 The Polyol Process 39
1.5.3 N,N-Dimethylformamide-Mediated Syntheses 41
1.5.4 Oleylamine-Mediated Syntheses 43
1.5.5 Plasmon-Mediated Syntheses 45
1.5.6 Electrochemical Square-Wave-Potential Methods 47
References 49
Chapter-2 58
Controlled Synthesis: Nucleation and Growth in Solution 58
2.1 Motivation for Controlled Synthesis of Metallic Nanomaterials 58
2.2 Stabilization in Solution-Phase Synthesis 61
2.2.1 Electrostatic Stabilization 61
2.2.2 Steric (or Polymeric) Stabilization 63
2.3 Fundamentals of Nucleation and Growth 64
2.3.1 Homogeneous Nucleation 64
2.3.2 Growth 68
2.3.3 Growth by Heterogeneous Nucleation (or Seeded Growth) 72
2.4 Manipulating Nucleation and Growth for Shape-Control 72
2.4.1 Growth Mechanisms 72
2.4.2 Controlled Synthesis of Silver Nanomaterials 76
2.5 Final Remarks 80
References 81
Chapter-3 84
Bimetallic Nanocrystals: Growth Models and Controlled Synthesis 84
3.1 Introduction 84
3.2 Influence Factors of Bimetallic Nanocrystal Structures 87
3.3 Characterizations of Bimetallic Nanocrystals 89
3.3.1 XRD Analysis 89
3.3.2 TEM Observations 91
3.3.3 Elemental Information Analyzed by HAADF-STEM and EDX 91
3.4 Properties of Bimetallic Nanocrystals with Different Structures 92
3.4.1 Optical Properties of Au@Ag Core-Shell and Alloy Nanocrystals 93
3.4.2 Catalytic Properties of Bimetallic Nanocrystals with Different structures 96
3.5 Synthetic Approaches of Bimetallic Nanocrystals 98
3.5.1 Thermal Decomposition 99
3.5.2 Coreduction 102
3.5.3 Galvanic Replacement Reaction 105
3.5.4 Seed-Mediated Growth 108
3.6 Summary 112
References 112
Chapter-4 115
Interactions of Metallic Nanocrystals with Small Molecules 115
4.1 Introduction 115
4.2 Molecule of O2 116
4.2.1 Au–O2 Interactions 117
4.2.1.1 Au Clusters 117
4.2.1.2 Au Nanocrystals 120
4.2.2 Pd–O2 Interactions 123
4.2.2.1 Surface Facet 123
4.2.2.2 Surface Charge State 124
4.2.3 Ag–O2 Interactions 125
4.2.4 Summary for Metal–Oxygen Interactions 126
4.3 Molecule of H2 127
4.3.1 Pd–H2 Interactions 127
4.3.2 Alloys with Isolated Pd Atoms 130
4.3.3 Applications 130
4.3.3.1 Catalytic Reactions 130
4.3.3.2 H2 Sensing 132
4.4 Conclusion and Outlook 136
4.5 Appendices 136
4.5.1 A. Synthetic Methods 136
4.5.2 B. ESR Measurement 137
References 137
Chapter-5 140
Plasmonic Nanostructures for Biomedical and Sensing Applications 140
5.1 Introduction 140
5.2 Optical Properties 141
5.2.1 Localized Surface Plasmon Resonance (LSPR) 141
5.2.2 Absorption 143
5.2.3 Photoluminescence 145
5.2.4 Scattering 146
5.3 Surface Effects 147
5.3.1 Surface-Enhanced Raman Scattering (SERS) 147
5.3.2 Surface-Enhanced Fluorescence (SEF) 150
5.3.3 Nanometal Surface Energy Transfer (NSET) 151
5.3.4 Surface Chemistry 153
5.4 Biomedical and Sensing Applications 154
5.4.1 Therapeutics 155
5.4.1.1 Photothermal Therapy 155
5.4.1.2 Chemotherapy 156
5.4.1.3 Gene Therapy 159
5.4.2 Biomedical Imaging 161
5.4.2.1 Photoacoustic Tomography (PAT) 161
5.4.2.2 Photothermal Imaging 162
5.4.2.3 Darkfield Microscopy 163
5.4.2.4 Optical Coherence Tomography (OCT) 164
5.4.2.5 Raman Imaging and Mapping 166
5.4.2.6 Multiphoton Luminescence 166
5.4.3 Sensing Applications 166
5.4.3.1 Agglomeration-Based Detection 168
5.4.3.2 LSPR-Based Detection 169
5.4.3.3 Raman-Based Sensing 170
5.4.3.4 Fluorescence-Based Sensing 172
5.5 Conclusion and Outlook 172
References 174
Chapter-6 181
Magnetic-Metallic Nanostructures for Biological Applications 181
6.1 Introduction 181
6.2 Chemical Synthesis of Magnetic-Metallic Nanostructures 182
6.2.1 Nanocrytals of Iron, Cobalt, and Nickel 182
6.2.1.1 Iron Nanocrystals 182
6.2.1.2 Nanocrystals of Cobalt and Nickel 187
6.2.2 Nanocrystals of Alloys of Iron, Cobalt, and Nickel 189
6.2.2.1 M–Pt (M = Fe, Co) Alloys Nanocrystals 189
6.2.2.2 M–Fe (M = Co, Ni) Alloys Nanocrystals 190
6.2.2.3 M–C (M = Fe, Co,Ni) Carbide Alloys Nanocrystals 192
6.2.2.4 Iron Carbides Nanosrystals 193
6.2.2.5 Cobalt Carbides Nanocrystals 195
6.2.2.6 Nickel Carbide Nanocrystals 195
6.3 Biological Applications of Magnetic-Metallic Nanocrystals 196
6.3.1 Magnetic-Metallic Nanocrystals for Magnetic Hyperthermia 196
6.3.2 Magnetic-Metallic Nanocrystals for Magnetic Resonance Imaging 200
6.3.3 Ion Releasing for Selectively Killing Cancer Cell 203
6.4 Conclusions and Perspectives 206
Reference 206
Chapter-7 210
Metallic Nanostructures for Electrocatalysis 210
7.1 Introduction 210
7.2 Electrochemical Reaction 211
7.2.1 Thermodynamics of Electrochemical Reaction 211
7.2.2 Kinetics of Electrochemical Reaction 214
7.3 Fundamentals for Metal Electrocatalysis 217
7.3.1 Mechanism of Metal Electrocatalysis 217
7.3.2 Kinetics of Metal Electrocatalysis 218
7.4 Fundamentals for Metal Electrocatalyst 219
7.4.1 Electronic Effect 219
7.4.2 Geometric Effect 221
7.4.3 Other Effects 222
7.4.3.1 Third-Body Effect 222
7.4.3.2 Bifunctional Effect 225
7.4.4 Practical Considerations in Metal Electrocatalyst Research 226
7.4.4.1 Chemical Stability of Metals 226
7.4.4.2 Metal Surface Restructuring and Segregation 227
7.5 Current Development of Metallic Nanostructures for Electrocatalysis 228
7.5.1 Oxygen Electrochemistry 228
7.5.1.1 Oxygen Reduction Reaction 228
7.5.1.2 Oxygen Evolution Reaction 232
7.5.2 Hydrogen Electrochemistry 233
7.5.2.1 Hydrogen Evolution Reaction 233
7.5.2.2 Hydrogen Oxidation Reaction (HOR) 234
7.5.3 Electrochemistry of Carbon-Containing Compounds 234
7.5.3.1 Methanol Oxidation Reaction 234
7.5.3.2 Formic Acid Oxidation Reaction 235
7.5.3.3 Ethanol Oxidation Reaction 236
7.5.4 Electrochemistry of Nitrogen-Containing Compounds 238
7.5.4.1 Ammonia Oxidation Reaction 238
7.5.4.2 Hydrazine Oxidation Reaction 239
References 241
Chapter-8 247
Metallic Nanostructures for Catalytic Applications 247
8.1 Introduction 247
8.2 Traditional Small Metallic Nanostructure Catalysis 250
8.2.1 Size and Facet-dependent Catalysis 252
8.2.2 Support Effect 255
8.3 Catalytic Reactions Using Traditional Metallic Nanostructure Catalysts 255
8.3.1 Carbon Monoxide Oxidation 255
8.3.2 Ethylene Epoxidation 258
8.4 Large Metallic Nanostructure Catalysis 260
8.4.1 Photocatalysis Model 260
8.4.2 Metallic Nanoparticles as an Electron Sink 261
8.4.3 Charge Transfer to the Support 263
8.4.4 Direct Charge Transfer to Adsorbed Species 265
8.4.5 Photothermal Effect on Catalysis 268
8.5 Conclusion 270
References 271
Chapter-9 274
Metallic Nanostructures for Electronics and Optoelectronics 274
9.1 Introduction 274
9.2 Transparent and Flexible Conductive Electrodes 275
9.2.1 Conventional Conductors 275
9.2.2 Silver Nanowires (Ag NWs) 276
9.2.2.1 Typical Synthesis and Electrode Fabrication 276
9.2.2.2 Performance of Typical Ag NW Mesh Electrodes 277
9.2.2.3 Methods for Reducing Sheet Resistance 279
9.2.2.4 Methods for Enhancing Optical Transmittance 281
9.2.2.5 Methods for Enhancing Stability 284
9.2.2.6 Methods for Improving Electrode Smoothness 288
9.2.2.7 Summary for Ag NW Mesh Electrodes 289
9.2.3 Cu nanowires (Cu NWs) 289
9.2.3.1 Typical Synthesis of Cu NWs 290
9.2.3.2 Fabrication of Cu NW Electrodes 290
9.2.3.3 Methods for Improving Cu NW Electrode Performance 290
9.2.3.4 Summary for Cu NW Electrodes 295
9.3 Plasmonic Waveguiding 296
9.3.1 Light Coupling 296
9.3.2 Plasmonic Propagation 298
9.3.3 Functional Components in Nanophotonic Circuits 299
9.3.4 Summary for Ag NW Plasmonic Waveguides 302
9.4 Conclusion and Outlook 302
9.5 Protocols 303
9.5.1 Typical Synthesis of Ag NWs 303
9.5.2 Typical Synthesis of Cu NWs 303
References 303

Erscheint lt. Verlag 31.10.2014
Zusatzinfo XI, 301 p. 196 illus., 137 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Technik Maschinenbau
Schlagworte Bimetallic Nanocrystals • magnetic materials • Metallic Alloy Plasmonics • Metallic Nanowires • Metal Nanostructures • Nanostructures in Biomedicine
ISBN-10 3-319-11304-6 / 3319113046
ISBN-13 978-3-319-11304-3 / 9783319113043
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 26,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Funktion, Gestaltung und Berechnung

von Karl-Heinz Decker; Karlheinz Kabus

eBook Download (2023)
Carl Hanser Fachbuchverlag
39,99