Power Converters for Medium Voltage Networks (eBook)

eBook Download: PDF
2014 | 2014
XLI, 278 Seiten
Springer Berlin (Verlag)
978-3-662-44529-7 (ISBN)

Lese- und Medienproben

Power Converters for Medium Voltage Networks - Md. Rabiul Islam, Youguang Guo, Jianguo Zhu
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book examines a number of topics, mainly in connection with advances in semiconductor devices and magnetic materials and developments in medium and large-scale renewable power plant technologies, grid integration techniques and new converter topologies, including advanced digital control systems for medium-voltage networks. The book's individual chapters provide an extensive compilation of fundamental theories and in-depth information on current research and development trends, while also exploring new approaches to overcoming some critical limitations of conventional grid integration technologies. Its main objective is to present the design and implementation processes for medium-voltage converters, allowing the direct grid integration of renewable power plants without the need for step-up transformers.



Md. Rabiul Islam (M'14, IEEE) received the B.Sc. and M.Sc. degree from Rajshahi University of Engineering and Technology (RUET), Rajshahi, Bangladesh, in 2003 and 2009, respectively, both in electrical and electronic engineering (EEE); and the Ph.D. degree from University of Technology Sydney (UTS), Sydney, Australia, in 2014, in electrical engineering.

From 2005 to 2008, he lectured with the Department of EEE, RUET, where he became an Assistant Professor in June 2008. He is currently a Research Associate with the School of Electrical, Mechanical and Mechatronic Systems, UTS. He has authored and coauthored more than 40 technical papers and 2 book chapters. His research interests are in the fields of power electronic converters, renewable energy technologies and smart grid.

Dr. Islam is a member of the Institution of Engineers, Bangladesh and the Australian Institute of Energy, Australia. He received the University Gold Medal and Joynal Memorial Award from RUET for his outstanding academic performance while pursuing the B.Sc. engineering degree. He also received the Best Paper Award at IEEE PECon-2012. He acts as a reviewer for several prestigious international journals.

Md. Rabiul Islam (M’14, IEEE) received the B.Sc. and M.Sc. degree from Rajshahi University of Engineering and Technology (RUET), Rajshahi, Bangladesh, in 2003 and 2009, respectively, both in electrical and electronic engineering (EEE); and the Ph.D. degree from University of Technology Sydney (UTS), Sydney, Australia, in 2014, in electrical engineering.From 2005 to 2008, he lectured with the Department of EEE, RUET, where he became an Assistant Professor in June 2008. He is currently a Research Associate with the School of Electrical, Mechanical and Mechatronic Systems, UTS. He has authored and coauthored more than 40 technical papers and 2 book chapters. His research interests are in the fields of power electronic converters, renewable energy technologies and smart grid.Dr. Islam is a member of the Institution of Engineers, Bangladesh and the Australian Institute of Energy, Australia. He received the University Gold Medal and Joynal Memorial Award from RUET for his outstanding academic performance while pursuing the B.Sc. engineering degree. He also received the Best Paper Award at IEEE PECon-2012. He acts as a reviewer for several prestigious international journals.

Preface 6
Contents 9
Figures 13
Tables 26
Symbols 28
Acronyms 33
Authors Biography 36
Keywords 38
1 Introduction 39
Abstract 39
1.1 Most Dominating Renewable Power Sources 39
1.1.1 Historical Growth of Wind Power Generation Capacity 40
1.1.2 Technical Challenges and Possible Solutions 41
1.1.3 Historical Growth of Solar PV Power Generation Capacity 45
1.1.4 Technical Challenges of Solar PV Power Generation Systems 46
1.1.5 Possible Solution to Technical Challenges for Large-Scale Renewable Generation Systems 48
1.2 Major Objectives of the Book 48
1.3 Contribution of the Book 49
1.4 Organization of the Book 50
References 51
2 Power Converters for Small- to Large-Scale Photovoltaic Power Plants 54
Abstract 54
2.1 Introduction 54
2.2 Solar Photovoltaic Arrays 58
2.2.1 Solar Photovoltaic Array Modeling 59
2.2.2 Solar Photovoltaic Array Characteristics 61
2.2.3 Solar Photovoltaic Array Maximum Power Point 62
2.3 Inverters in Small-Scale Solar PV Systems 65
2.3.1 Two-Stage Solar PV Inverters for Small-Scale Systems 65
2.3.2 Multiple-Stages Solar PV Inverters for Small-Scale Systems 68
2.3.3 Single-Stage Solar PV Inverter for Small-Scale Systems 71
2.3.4 ABB and Siemens Solar PV Inverters for Small-Scale Systems 74
2.4 Medium- and Large-Scale Solar PV Systems 75
2.5 Summary 83
References 84
3 Power Converter Topologies for Grid-Integrated Medium-Voltage Applications 87
Abstract 87
3.1 Introduction 87
3.2 Two-Level Converters 89
3.2.1 Single-Phase Converter 89
3.2.1.1 Half-Bridge Converter 89
3.2.1.2 Full-Bridge Converter 91
3.2.2 Three-Phase Converter 94
3.2.3 Space Vector Pulse Width Modulation (SV-PWM) 96
3.2.3.1 Switching Pattern of Seven Switching States 100
3.2.3.2 Three Switching States Switching Pattern (Only One Zero Vector) 102
3.2.3.3 Three Switching States Switching Pattern (Both Zero Vectors but Alternatively) 104
3.2.3.4 Four Switching States Switching Pattern 106
3.2.3.5 Evaluation of Switching Patterns 108
3.3 Multilevel Converters 109
3.3.1 Neutral Point Clamped Converter 114
3.3.2 Flying Capacitor Converter 116
3.3.3 Modular Multilevel Cascaded Converter 117
3.3.4 Switching Schemes of Multilevel Converters 119
3.3.4.1 Phase-Shifted Carrier-Based Switching Scheme 119
3.3.4.2 Level-Shifted Carrier-Based Switching Scheme 124
3.3.4.3 Reference Signals in Switching Schemes 126
3.4 Selection of Multilevel Converter Topology for Medium-Voltage Applications 131
3.4.1 Detailed Design and Analysis of 5-Level and 11-Level NPC Converters 133
3.4.2 Detailed Design and Analysis of 5-Level and 11-Level FC Converters 135
3.4.3 Detailed Design and Analysis of 5-Level and 11-Level MMC Converters 137
3.4.4 Performance Analysis and Topology Selection 138
3.5 Summary 141
References 141
4 Design and Characterization of High-Frequency Magnetic Links Used in Power Electronic Converters 144
Abstract 144
4.1 Introduction 144
4.2 Design of High-Frequency Magnetic Links 148
4.2.1 Flowchart of High-Frequency Magnetic-Link Design 149
4.2.2 Core Material Selection 149
4.2.3 Calculation of Number of Turns 153
4.2.4 Winding Wire Selection 156
4.2.5 Parasitic Calculation 160
4.2.5.1 Stray Capacitances 160
4.2.5.2 Leakage Inductances 162
4.2.6 Design Optimization 163
4.2.7 Transformer Core Development 166
4.3 Characterization of High-Frequency Magnetic Links 171
4.3.1 Windings DC Resistance Calculation 171
4.3.2 Voltage Transformation Ratio Calculation 173
4.3.3 Measurement of Losses 175
4.3.4 Measurement of B–H Characteristics 179
4.3.5 Measurement of DC-Link Voltages 184
4.4 Summary 185
References 186
5 FPGA-Based Digital Switching Controller for Multilevel Converters 188
Abstract 188
5.1 Introduction 188
5.1.1 ASIC Technology 189
5.1.2 DSP Technology 189
5.1.3 FPGA Technology 190
5.1.3.1 FPGA for Multilevel Converters 191
5.1.3.2 FPGA Developmental Boards and Kits 192
5.2 FPGA-Based Switching Controller Design Techniques 193
5.3 Modeling and Schematic Symbol Creation Using VHDL 198
5.3.1 Carrier Signal Generation Unit 198
5.3.2 Reference Signal Generation Unit 200
5.3.3 Comparator Unit 202
5.4 Model of Complete Switching Controller 208
5.5 Behavioral Simulation of Switching Controller 209
5.6 Model Implementation 210
5.7 Design Verification 213
5.8 FPGA Programming 216
5.9 Experimental Testing and Verifications 217
5.10 Summary 222
References 222
6 Experimental Validation of 1-kV Modular Multilevel Cascaded Converter with High-Frequency Magnetic Link 224
Abstract 224
6.1 Introduction 224
6.2 Development of High-Frequency Magnetic-Link MMC Converter 229
6.2.1 Development of a 3-Phase 5-Level MMC Converter 229
6.2.2 Design of Driver Circuit 231
6.2.3 Development of High-Frequency Rectifiers with Fast Recovery Diodes 234
6.2.4 Development of High-Frequency Inverter 238
6.2.5 Development of High-Frequency Magnetic Link 243
6.3 Experimental Testing and Performance Analysis 244
6.4 Summary 259
References 259
7 Design and Analysis of 11- and 33-kV Modular Multilevel Cascaded Converters 261
Abstract 261
7.1 Introduction 261
7.1.1 Traditional Converters for Wind Power Generation Systems 262
7.1.2 Traditional Converters for Solar PV Power Plants 265
7.1.3 Power Transformers in Traditional Converter-Based Renewable Generation Systems 268
7.1.4 Medium-Voltage Converters for Direct Grid Integration 274
7.2 Design and Analysis of 11-kV Converter Systems 276
7.2.1 Design and Analysis of 9-Level 11-kV Converter 277
7.2.2 Design and Analysis of 11-Level 11-kV Converter 280
7.2.3 Design and Analysis of 15-Level 11-kV Converter 282
7.2.4 Design and Analysis of 19-Level 11-kV Converter 284
7.2.5 Design and Analysis of 21-Level 11-kV Converter 288
7.2.6 Selection of Number of Levels for 11-kV Converter Systems 290
7.3 Design and Analysis of 33-kV Converter Systems 292
7.3.1 Design and Analysis of 15-Level 33-kV Converter 293
7.3.2 Design and Analysis of 23-Level 33-kV Converter 295
7.3.3 Design and Analysis of 29-Level 33-kV Converter 296
7.3.4 Design and Analysis of 43-Level 33-kV Converter 299
7.3.5 Design and Analysis of 55-Level 33-kV Converter 304
7.3.6 Selection of Optimal Number of Levels for 33-kV Converter 306
7.4 Summary 307
References 307
8 Conclusions and Future Works 309
Abstract 309
8.1 Introduction 309
8.2 Conclusions 310
8.3 Future Works 311

Erscheint lt. Verlag 15.9.2014
Reihe/Serie Green Energy and Technology
Zusatzinfo XLI, 278 p. 356 illus., 70 illus. in color.
Verlagsort Berlin
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Amorphous Alloy • Common Magnetic Bus • Digital Control Power Systems • Direct Grid Integration • Medium Voltage Converter • Power converters • Renewable Power Plants
ISBN-10 3-662-44529-8 / 3662445298
ISBN-13 978-3-662-44529-7 / 9783662445297
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 21,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99
200 Aufgaben zum sicheren Umgang mit Quellen ionisierender Strahlung

von Jan-Willem Vahlbruch; Hans-Gerrit Vogt

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
34,99