Metal-Based Composite Nanomaterials (eBook)
XIII, 259 Seiten
Springer International Publishing (Verlag)
978-3-319-12220-5 (ISBN)
Prof. Jun YANG was born in Hebei, China, in 1972. He received his Ph.D. in Chemical and Biomolecular Engineering in 2006 from National University of Singapore (with Professor Jim Yang LEE). After postdoctoral research at Boston College and University of Toronto, he joined the Institute of Bioengineering and Nanotechnology, Singapore in 2007. In 2010, he moved to Institute of Process Engineering, Chinese Academy of Sciences as the leader of Group of Materials for Energy Conversion and Environmental Remediation (MECER). His main research interests include (i) applied catalysis, (ii) nanocomposites for energy conversion, (iii) synthesis and application of novel nanocrystalline materials, and (iv) separation techniques.
Dr. Hui LIU was born in Shandong, China, in 1986. She studied environmental engineering at South-Central University for Nationalities (B.S. 2008) and organic chemistry at University of Science and Technology Beijing (M.S. 2010). She received her Ph.D. with Prof. Jun YANG at Institute of Process Engineering, Chinese Academy of Sciences (IPE-CAS) in 2014 and started as an Assistant Professor of Group of Materials for Energy Conversion and Environmental Remediation (MECER) at IPE-CAS at the same year. Her research interests focus on the synthesis of novel composite nanomaterials for energy conversion and environmental remediation, electrocatalysis, and Phase transfer-based extraction of heavy metals.
Prof. Jun YANG was born in Hebei, China, in 1972. He received his Ph.D. in Chemical and Biomolecular Engineering in 2006 from National University of Singapore (with Professor Jim Yang LEE). After postdoctoral research at Boston College and University of Toronto, he joined the Institute of Bioengineering and Nanotechnology, Singapore in 2007. In 2010, he moved to Institute of Process Engineering, Chinese Academy of Sciences as the leader of Group of Materials for Energy Conversion and Environmental Remediation (MECER). His main research interests include (i) applied catalysis, (ii) nanocomposites for energy conversion, (iii) synthesis and application of novel nanocrystalline materials, and (iv) separation techniques.Dr. Hui LIU was born in Shandong, China, in 1986. She studied environmental engineering at South-Central University for Nationalities (B.S. 2008) and organic chemistry at University of Science and Technology Beijing (M.S. 2010). She received her Ph.D. with Prof. Jun YANG at Institute of Process Engineering, Chinese Academy of Sciences (IPE-CAS) in 2014 and started as an Assistant Professor of Group of Materials for Energy Conversion and Environmental Remediation (MECER) at IPE-CAS at the same year. Her research interests focus on the synthesis of novel composite nanomaterials for energy conversion and environmental remediation, electrocatalysis, and Phase transfer-based extraction of heavy metals.
Preface 1 Introduction References 2 A General Phase Transfer Approach for Metal Ions and Nanoparticles 2.1 Foreword 2.2 Brust-Schiffrin method 2.3 Ethanol mediated phase transfer 2.3.1 Ethanol mediated phase transfer of metal precursors 2.3.2 Ethanol mediated phase transfer of metal nanoparticles already formed 2.4 Summary References 3 Nanocomposites of Gold and Semiconductors 3.1 Foreword 3.2 A general synthetic approach for semiconductor nanocrystals 3.3 Deposition of Au on the surface of semiconductor nanocrystals 3.3.1 Contributions from the Banin group 3.3.2 Contributions from the other research groups 3.3.3 Semiconductor-gold nanocomposites based on the general phase transfer protocol 3.3.3.1 Semiconducting metal sulfide nanocrystals 3.3.3.2 CdS-Au nanocomposites 3.3.3.3 Metal sulfide-Au nanocomposites 3.3.3.4 PbS-Ag/Au nanocomposites 3.4 Deposition of other noble metals on the surface of semiconductor nanocrystals 3.5 Semiconductor–gold nanocomposite catalysts for the efficient three-component coupling of aldehyde, amine and alkyne in water 3.6 Summary References 4 Nanocomposites Consisting of Silver Sulfide and Noble Metals 4.1 Foreword 4.2 Aqueous synthesis of Ag2S nanocrystals 4.3 Binary Ag2S-noble metal nanocomposites 4.4 Multiple Ag2S-noble metal nanocomposites 4.5 Electrochemical property of Pt-containing Ag2S-noble metal nanocomposites 4.6 Summary References 5 Cadmium Selenide-Platinum Nanocomposites with A Core-Shell Construction 5.1 Foreword 5.2 Reversible phase transfer of semiconductor and noble metal nanoparticles 5.2.1 Ligand exchange-based phase transfer of semiconductor and noble metal nanoparticles from organic medium to aqueous phase5.2.2 Electrostatic interaction -based reversible phase transfer of semiconductor and noble metal nanoparticles between organic medium and aqueous phase 5.3 Core-shell CdSe@Pt nanocomposites 5.3.1 Characterizations of CdSe nanocrystals and core-shell CdSe@Pt nanocomposites 5.3.2 The compressive strain effect of CdSe core on Pt shell 5.3.3 Electrochemical activity of core-shell CdSe@Pt nanocomposites 5.4 Summary References 6 Nanocomposites of Silver Sulfide and Noble Metals with Controlled Nanostructures 6.1 Foreword 6.2 Inside-out diffusion of Ag in Ag-containing single or double shell core-shell metal nanoparticles 6.3 Nanocomposites consisting of Ag2S and noble metal nanoparticles with hollow interiors 6.4 Nanocomposites consisting of Ag2S and bimetallic Au-Pt nanoparticles with cage-bell structures 6.5 Core-shell Pd-Ag2S nanocomposites 6.6 Ternary nanocomposites consisting of Ag2S, Au, and Pt nanoparticles with hollow interiors 6.7 Electrochemical properties of the nanocomposites and their core-shell parents 6.8 Summary References 7 Nanocomposites of Metal Oxides and Noble Metals 7.1 Foreword 7.2 Novel gold catalysts for the oxidation of CO at low temperature the pioneering work by Haruta et al. 7.3 Early studies in metal oxide-Au nanocomposites 7.4 Dumbbell-like metal oxide-noble metal nanocomposites 7.5 High-order nanocomposites 7.6 RuO2-based nanocomposites 7.6.1 RuO2/C nanocomposites 7.6.2 RuO2-Au/C nanocomposites 7.6.3 Electrochemical properties of RuO2/C and RuO2-Au/C nanocomposites 7.7 Summary References 8 Nanocomposite-Related Scientific Issues 8.1 Foreword 8.2 Room temperature synthesis and growth mechanism of Ag2S nanocrystals in a nonpolar organic solvent 8.2.1 Formation of monodisperse Ag2S NCs in toluene at room temperature 8.2.2 Structural evolutions of Ag2S nanocrystals 8.2.3 Growth mechanism of Ag2S nanocrystals 8.2.4 Influence of temperature and Ag/S molar ratios on the growth of Ag2S NCs 8.2.5 Synthesis of dimeric Ag2S-Au nanocomposites 8.3 Diffusion of gold from the inner core to the surface of Ag2S nanocrystals 8.4 Coalescence of Ag2S and Au nanocrystals at room temperature 8.4.1 Coalescence of Au and Ag2S nanocrystals 8.4.2 Mechanism accounting for the coalescence of Au and Ag2S nanocrystals 8.4.3 Removal of Au from quantum dot-Au hybrids 8.4.4 Extraction of Au from Au-containing alloy nanoparticles 8.5 A facile solution route for the synthesis of PbSe–Au nanocomposites with different morphologies 8.5.1 Synthesis of PbSe seed particles 8.5.2 Synthesis of PbSe-Au nanocomposite 8.5.3 Mechanism for the nucleation and growth of Au on PbSe nanocrystals 8.6 Selective electrocatalysts toward a prototype of the membraneless direct methanol fuel cell 8.6.1 Ternary Au@Ag2S-Pt nanocomposites as selective electrocatalysts at DMFC anode 8.6.2 CBS Pt-Ru nanoparticles as selective electrocatalysts at DMFC cathode 8.6.3 A prototype of the membraneless direct methanol fuel cell 8.7 Summary References 9 Conclusion and Perspectives.
Erscheint lt. Verlag | 31.10.2014 |
---|---|
Zusatzinfo | XIII, 259 p. 173 illus., 76 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Technik ► Maschinenbau |
Schlagworte | catalysis • Composite Nanomaterials • Electrostatic Coupling • Lateral Strain Effect • Metal Nanomaterials • Methanol Oxidation Reaction • Nanocomposite • Nanoparticle • nanostructure |
ISBN-10 | 3-319-12220-7 / 3319122207 |
ISBN-13 | 978-3-319-12220-5 / 9783319122205 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 20,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich