Advances in Applied Microbiology

Advances in Applied Microbiology (eBook)

eBook Download: PDF | EPUB
2015 | 1. Auflage
228 Seiten
Elsevier Science (Verlag)
978-0-12-802473-7 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
102,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

A compilation of up to date reviews of topics in biotechnology and medical field.


Key features:

* Contributions from leading authorities * Informs and updates on all the latest developments in the field


A compilation of up to date reviews of topics in biotechnology and medical field. Contributions from leading authorities Informs and updates on all the latest developments in the field

Front Cover 1
Advances in Applied Microbiology 2
Advances in Applied Microbiology 
4 
Copyrights 
5 
Contents 6
Contributors 
8 
Sugar Catabolism in Aspergillus and Other Fungi Related to the Utilization of Plant Biomass 10
1. Introduction 11
2. Composition of Plant Biomass 11
3. Fungal Growth on Plant Biomass 14
4. Aspergillus as a Plant Biomass Degrader 14
4.1 The Genus Aspergillus 14
5. Fungal Sugar Catabolism 15
5.1 Catabolism of d-Glucose and d-Fructose through Glycolysis 15
5.2 Pentose Phosphate Pathway 18
5.3 Conversion of d-Xylose and l-Arabinose through the PCP 19
5.4 Catabolism of d-galactose 23
5.5 Catabolism of d-Mannose 26
5.6 Catabolism of l-Rhamnose 27
5.7 Catabolism of d-Galacturonic Acid 28
6. Conclusions 30
Acknowledgments 31
References 31
The Evolution of Fungicide Resistance 38
1. Introduction 39
2. Fungicide Resistance: The Evolutionary Context 40
3. Fungicide Use on Cereals in Europe 45
4. Mechanisms of Resistance to Single-Site Inhibitors 47
5. Case Histories 48
5.1 Eyespot of Cereals 48
5.1.1 Changes in Field Populations of the Cereal Eyespot Pathogens in Response to Fungicide Use 53
5.2 Septoria tritici Blotch of Wheat 56
5.2.1 Changes in CYP51 61
5.2.2 Additional Resistance Mechanisms to Azoles 63
5.2.3 SDHI Fungicides and Z. tritici 64
5.3 Powdery Mildew of Cereals, B. graminis 65
5.4 Fusarium Ear Blight 68
6. Predictability of Resistance Evolution 70
6.1 Mutagenesis and in vitro Selection 70
6.2 Fitness Costs 72
6.3 Parallel Evolution 73
6.4 Functional Constraints and Epistasis 75
7. Estimating Resistance Risk 78
8. Implications for Resistance Management 80
8.1 Resistance Diagnostics 80
8.2 Evaluating Management Strategies 81
8.3 The Impact of Genomics 83
9. Conclusions 84
Acknowledgments 85
References 85
Genetic Control of Asexual Development in Aspergillus fumigatus 102
1. Introduction 103
2. Central Regulatory Pathway of Conidiation 104
3. The Roles of the Velvet Regulators in Conidiation 106
4. FluG and FLBs Govern Upstream Activation of Conidiation 109
5. Heterotrimeric G-protein Signaling Indirectly Controls Conidiation 110
6. Light and Conidiation 112
7. Conclusions and Prospects 113
Acknowledgments 114
References 114
Escherichia coli ST131: The Quintessential Example of an International Multiresistant High-Risk Clone 118
1. Introduction 119
2. Extraintestinal Pathogenic E. coli 120
3. Expanded-Spectrum ß-Lactamases 122
3.1 CTX-M ß-Lactamases 123
3.2 AmpC ß-Lactamases or Cephalosporinases 125
3.3 NDM ß-Lactamases 126
4. OXA-48-like ß-Lactamases 128
5. International Multiresistant High-Risk Clones 129
6. Escherichia coli ST131 132
6.1 Initial Studies Pertaining to E. coli ST131 132
6.2 Plasmids Associated with E. coli ST131 136
6.3 Recent Developments Pertaining to ST131 138
6.3.1 Epidemiology and Clinical Issues 138
6.3.2 Population Biology 139
6.3.3 O16:H5 H41 Lineage 141
6.3.4 Virulence 142
6.3.5 ST131 and Carbapenemases 142
6.4 Does ST131 Qualify as an International Multiresistant High-Risk Clone? 143
6.4.1 Global Distribution 144
6.4.2 Association with Antimicrobial Resistance Mechanisms 144
6.4.3 Ability to Colonize Human Hosts 145
6.4.4 Effective Transmission among Hosts 145
6.4.5 Enhanced Pathogenicity and Fitness 146
6.4.6 Causing Severe and/or Recurrent Infections 146
7. Rapid Methods for the Detection of E. coli ST131 147
7.1 Multilocus Sequence Typing 147
7.2 Pulsed Field Gel Electrophoresis 148
7.3 Repetitive Sequence-Based PCR Typing 148
7.4 Polymerase Chain Reaction 149
7.5 Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry 150
8. Summary 151
References 152
Colonization Factors of Enterotoxigenic Escherichia coli 164
1. Introduction 165
2. Pilus and Pilus-Related Colonization Factors 167
2.1 General Characteristics 167
2.1.1 Morphology and Composition 167
2.1.2 Adherence Function 170
2.1.3 Nomenclature 171
2.1.4 Genetics 172
2.2 Pili Assembled by the CU Pathway 172
2.2.1 CFs of the a-FUP Clade 175
2.2.2 CFs of the .2-FUP Clade 178
2.2.3 CFs of the .3-FUP Clade 178
2.2.4 CFs of the .-FUP Clade 180
2.2.5 Structure of CFs Assembled by the CU Pathway 181
2.3 Type IV pili 185
2.3.1 CFA/III and Longus 185
2.3.2 Structure of Type IV Pili in ETEC 187
3. Nonpilus Adhesins 189
3.1 Tia 189
3.2 EtpA 190
3.3 TibA 191
4. Regulation of Pilus Expression 192
4.1 AraC family Transcriptional Regulators 192
4.2 Phase Variation 195
5. Conclusions 196
References 197
Index 208
Contents of Previous Volumes 
216 

Chapter One

Sugar Catabolism in Aspergillus and Other Fungi Related to the Utilization of Plant Biomass


Claire Khosravi, Tiziano Benocci, Evy Battaglia, Isabelle Benoit and Ronald P. de Vries1     Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
1 Corresponding author: E-mail: r.devries@cbs.knaw.nl 

Abstract


Fungi are found in all natural and artificial biotopes and can use highly diverse carbon sources. They play a major role in the global carbon cycle by decomposing plant biomass and this biomass is the main carbon source for many fungi. Plant biomass is composed of cell wall polysaccharides (cellulose, hemicellulose, pectin) and lignin. To degrade cell wall polysaccharides to different monosaccharides, fungi produce a broad range of enzymes with a large variety in activities. Through a series of enzymatic reactions, sugar-specific and central metabolic pathways convert these monosaccharides into energy or metabolic precursors needed for the biosynthesis of biomolecules. This chapter describes the carbon catabolic pathways that are required to efficiently use plant biomass as a carbon source. It will give an overview of the known metabolic pathways in fungi, their interconnections, and the differences between fungal species.

Keywords


Aspergillus; Carbon catabolic enzymes; Central carbon metabolism; Plant polysaccharides utilization; Sugar catabolism

1. Introduction


Plant biomass is the main renewable material on earth, and is the major starting material for several industrial areas. A growing industrial sector in which plant-degrading enzymes are used is the production of alternative fuels, such as bio-ethanol, and biochemicals. The substrate for these conversions is plant material, either from crops specially grown for this purpose or agricultural waste. Plant polysaccharides can be converted to fermentable sugars by fungal enzymes. The sugars are then fermented to ethanol and other products by yeast (Saccharomyces cerevisiae). Aspergillus species are organisms of choice for enzyme production for pretreatment of plant material because they have high levels of protein secretion and they produce a wide range of enzymes for plant polysaccharide degradation (de Vries & Visser, 2001). In nature, Aspergillus degrades the polysaccharides to obtain monomeric sugars that can serve as a carbon source. Therefore, Aspergillus uses a variety of catabolic pathways to efficiently convert all the monomeric components of plant biomass.
In this chapter, we present an overview of the main carbon catabolic pathways of Aspergillus and other fungi involved in converting the main monomers (D-glucose, D-xylose, L-arabinose, D-galactose, D-mannose, L-rhamnose, and D-galacturonic acid) present in plant polysaccharides.

2. Composition of Plant Biomass


Plant biomass consists mainly of polysaccharides, lignin, and proteins. The composition of plant polysaccharides depends not only on the plant species, but also on the plant tissue, growth conditions (season), and the age at harvesting. The average composition is 40–45% cellulose, 20–30% hemicellulose, and 15–25% lignin. The different plant cell wall polysaccharides interact with each other and with the aromatic polymer lignin to ensure strength and structural form of the plant cell. The different polysaccharides in the plant cell wall contain a variety of monomers (Table 1).

Table 1

Composition of plant polysaccharides

Type Monomers
Cellulose D-glucose
Hemicellulose Xylan D-xylose
Glucuronoxylan
Arabinoglucuronoxylan D-xylose, L-arabinose
Arabinoxylan D-xylose, L-arabinose
Galacto(gluco)mannan D-glucose, D-mannose, D-galactose
Mannan/galactomannan D-mannose, D-galactose
Glucuronomannan D-mannose, D-glucoronic acid, D-galactose, L-arabinose
Xyloglucan D-glucose, D-xylose, D-fructose, D-galactose
Glucan D-glucose
Arabinogalactan D-galactose, L-arabinose, D-glucuronic acid
Pectin Homogalacturonan D-galacturonic acid
Xylogalacturonan D-galacturonic acid, D-xylose
Rhamnogalacturonan
I
D-galacturonic acid, L-rhamnose, D-galactose, L-arabinose

Based on Kowalczyk et al. (2014).

Cellulose is a linear polymer of β-1,4-linked D-glucose residues. The cellulose polymers are present as ordered structures, and their main function is to ensure the rigidity of the plant cell wall (Boyce & Andrianopoulos, 2006). The long glucose chains are tightly bundled together into microfibrils by hydrogen bonds to form an insoluble crystalline fibrous material (de Vries, Nayak, van den Brink, Vivas Duarte, & Stalbrand, 2012). In addition to this crystalline structure, cellulose microfibrils also contain noncrystalline (amorphous) regions. The ratio of crystalline and noncrystalline cellulose depends on its origin (Lin, Tang, & Fellers, 1987).
Hemicelluloses, the second most abundant polysaccharides in nature, have a heterogeneous composition of various sugar units. Hemicelluloses are usually classified according to the main sugar residues in the backbone of the polymer. The major hemicellulose polymer in cereals and hardwood is xylan. Its consists of a backbone of β-1,4-linked D-xylose residues, which can be acetylated and has mainly α-1,2- or α-1,3-linked L-arabinose (arabinoxylan) and/or α-1,2-linked (4-O-methyl-)D-glucuronic acid (glucuronoxylan) residues attached to the main chain (de Vries & Visser, 2001). In addition, it can also contain D-galactose, feruloyl, and p-coumaroyl residues (van den Brink & de Vries, 2011). The main xylan present in softwood and cereals is arabinoxylan, whereas hardwood contains mainly glucuronoxylan. A second hemicellulose polymer commonly found in soft- and hardwood is galactoglucomannan. This consists of a backbone of β-1,4-linked D-mannose residues, occasionally interrupted by D-glucose residues with D-galactose side groups (mainly in softwoods). Another hemicellulose, xyloglucan, is present in the cell walls of dicotyledonae and some monocotylodonae (e.g., onion). It consists of β-1,4-linked D-glucose backbone substituted by D-xylose. There are two major types of xyloglucans in plant cell walls: XXGG and XXXG, representing two and three xylose-substituted glucose residues, separated by two and one unsubstituted glucose residues, respectively (Vincken, York, Beldman, & Voragen, 1997). Different monosaccharides can be attached to the xylose residues (Scheller & Ulvskov, 2010). All hemicelluloses can be acetylated and are cross-linked to cellulose via hydrogen bonds creating a complex and rigid network (Carpita & Gibeaut, 1993; Willats, Orfila, et al., 2001).
Pectin is a complex polysaccharide, which is another major component of primary cell wall. It provides rigidity to the cell and plays an important role in porosity, surface charge, pH, and ion balance of the cell wall (Willats, McCartney, MacKie, & Knox, 2001). Pectin contains two different defined regions (Perez, Mazeau, & Herve du Penhoat, 2000; de Vries & Visser, 2001). The “smooth” regions or homogalacturonan (HGA) consist of a linear chain of α-1,4-linked D-galacturonic acid residues that can be acetylated at O-2 or O-3 or methylated at O-6 (Willats, Orfila, et al., 2001). Pectin methyl and acetyl esterases act on this substrate to de-esterify the backbone after which it can be cross-linked by calcium to form a gel, which plays a role in intracellular adhesion (Braccini & Pérez, 2001; Morris, 1986; Willats et al., 2001b). The “hairy” regions contain two different structures, xylogalacturonan (XGA) and rhamnogalacturonan I (RG-I). XGA, like HGA, contains an α-1,4-linked D-galacturonic acid backbone that contains β-1,3-linked D-xylose side groups (Schols, Bakx, Schipper, & Voragen, 1995). RG-I contains an alternating backbone of α-1,4-linked D-galacturonic acid and α-1,2-linked L-rhamnose residues. Long side chains of L-arabinose (arabinan), D-galactose (galactan), or a mixture (arabinogalactan) can be attached to the...

Erscheint lt. Verlag 20.1.2015
Mitarbeit Herausgeber (Serie): Geoffrey Michael Gadd, Sima Sariaslani
Sprache englisch
Themenwelt Medizin / Pharmazie Allgemeines / Lexika
Naturwissenschaften Biologie Mikrobiologie / Immunologie
Technik Umwelttechnik / Biotechnologie
ISBN-10 0-12-802473-9 / 0128024739
ISBN-13 978-0-12-802473-7 / 9780128024737
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 4,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 3,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich