Advances in Batteries for Medium and Large-Scale Energy Storage -

Advances in Batteries for Medium and Large-Scale Energy Storage (eBook)

Types and Applications
eBook Download: PDF | EPUB
2014 | 1. Auflage
634 Seiten
Elsevier Science (Verlag)
978-1-78242-022-4 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
200,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
As energy produced from renewable sources is increasingly integrated into the electricity grid, interest in energy storage technologies for grid stabilisation is growing. This book reviews advances in battery technologies and applications for medium and large-scale energy storage. Chapters address advances in nickel, sodium and lithium-based batteries. Other chapters review other emerging battery technologies such as metal-air batteries and flow batteries. The final section of the book discuses design considerations and applications of batteries in remote locations and for grid-scale storage.
  • Reviews advances in battery technologies and applications for medium and large-scale energy storage
  • Examines battery types, including zing-based, lithium-air and vanadium redox flow batteries
  • Analyses design issues and applications of these technologies

As energy produced from renewable sources is increasingly integrated into the electricity grid, interest in energy storage technologies for grid stabilisation is growing. This book reviews advances in battery technologies and applications for medium and large-scale energy storage. Chapters address advances in nickel, sodium and lithium-based batteries. Other chapters review other emerging battery technologies such as metal-air batteries and flow batteries. The final section of the book discuses design considerations and applications of batteries in remote locations and for grid-scale storage. Reviews advances in battery technologies and applications for medium and large-scale energy storage Examines battery types, including zing-based, lithium-air and vanadium redox flow batteries Analyses design issues and applications of these technologies

Front Cover 1
Advances in Batteries for Medium- and Large-scale Energy Storage 4
Copyright 5
Contents 6
List of contributors 12
Woodhead Publishing Series in Energy 16
Part One: Introduction 20
Chapter 1: Electrochemical cells for medium- and large-scale energy storage: fundamentals 22
1.1. Introduction 22
1.2. Potential and capacity of an electrochemical cell 23
1.2.1. Theoretical potential 23
1.2.2. Actual cell potential 27
1.2.2.1. Ohmic overpotential 28
1.2.2.2. Activation overpotential 28
1.2.2.3. Concentration overpotential 30
1.2.3. Capacity 32
1.2.3.1. Theoretical capacity and actual capacity 32
1.2.3.2. Capacity decay in secondary battery systems 33
1.2.4. Other important parameters of electrochemical cells 33
1.3. Electrochemical fundamentals in practical electrochemical cells 35
1.3.1. Electrochemical fundamentals of the lithium-ion battery 35
1.3.2. Electrochemical fundamentals of the redox flow battery 38
1.3.3. Electrochemical fundamentals of the sodium battery 42
References 45
Chapter 2: Economics of batteries for medium- and large-scale energy storage 48
2.1. Introduction 48
Case study1-small scale 53
Case study2-large scale 53
2.2. Small-scale project 53
2.2.1. Simulation inputs 53
2.2.1.1. Primary load data 53
2.2.1.2. Solar resource and photovoltaic module 54
2.2.1.3. Wind resource and turbine 55
2.2.1.4. Energy storage systems 56
2.2.1.4.1. Lead-acid battery: Surrette S4KS25P 56
2.2.1.4.2. Vanadium redox flow battery 57
2.2.1.5. Diesel generator 57
2.2.1.6. Additional considerations 58
2.2.2. Simulation results and discussion 58
2.2.2.1. Energy storage system vs. diesel generator 58
2.2.2.2. Flow-type battery (VRB) versus lead-acid battery 61
2.3. Large-scale project 63
2.3.1. Simulation inputs 63
2.3.1.1. Primary load data 63
2.3.1.2. Solar resource and photovoltaic module 63
2.3.1.3. Wind resource and turbine 65
2.3.1.4. Energy storage system and additional considerations 65
2.3.2. Simulation results and discussion 65
2.3.2.1. Energy storage system (VRB) vs. diesel generator 66
2.3.2.2. Vanadium redox flow battery vs. lead-acid battery 67
2.4. Conclusions 71
References 71
Part Two: Lead, nickel, sodium, and lithium-based batteries 74
Chapter 3: Lead-acid batteries for medium- and large-scale energy storage 76
3.1. Introduction 76
3.2. Electrochemistry of the lead-acid battery 77
3.3. Pb-acid battery designs 78
3.4. Aging effects and failure mechanisms 80
3.5. Advanced lead-acid batteries 81
3.6. Applications of lead-acid batteries in medium- and long-term energy storage 86
3.7. Summary and future trends 88
References 88
Chapter 4: Nickel-based batteries for medium- and large-scale energy storage 92
4.1. Introduction 92
4.2. Basic battery chemistry 94
4.2.1. Ni-Cd battery 94
4.2.2. Ni-MH battery 95
4.3. Battery development and applications 96
4.3.1. Ni-Cd 97
4.3.1.1. Positive and negative electrodes 97
4.3.1.2. Classification 98
4.3.1.3. Application 98
4.3.2. Ni-MH battery 100
4.3.2.1. Negative electrode 100
4.3.2.2. Electrolyte and separator 102
4.3.2.3. Construction 102
4.3.2.4. Ni-Cd versus Ni-MH batteries 103
4.3.2.5. Low self-discharge Ni-MH batteries 104
4.3.2.6. Applications 105
4.4. Future trends 105
4.4.1. Ni-Cd batteries 106
4.4.2. Ni-MH batteries 106
4.4.3. Recycling 107
4.5. Sources of further information and advice 108
References 108
Chapter 5: Molten salt batteries for medium- and large-scale energy storage 110
5.1. Introduction 110
5.2. Sodium-ß-alumina batteries (NBBs) 110
5.2.1. Battery electrochemistries 111
5.2.2. ß-Alumina solid electrolyte (BASE) 114
5.2.3. Negative electrode or sodium anode 126
5.2.4. Positive electrode or cathode 127
5.2.5. Battery efficiencies and cycle life 135
5.3. Challenges and future trends 136
References 139
Chapter 6: Lithium-ion batteries (LIBs) for medium- and large-scale energy storage: current cell materials and components 144
6.1. Introduction 144
6.2. Chemistry of lithium-ion batteries: anodes 146
6.2.1. Carbonaceous materials 146
6.2.2. Lithium titanate (Li4Ti5O12) 151
6.2.3. Tin-based anode materials 152
6.3. Chemistry of LIBs: cathodes 154
6.3.1. Olivine lithium metal phosphates 154
6.3.2. Layered lithium metal oxides 158
6.3.3. Spinel lithium metal oxides: LiMn2O4 160
6.3.4. Summary 161
6.4. Chemistry of LIBs: electrolytes 162
6.4.1. Passivation of the negative electrode (SEI) 162
6.4.2. Inorganic lithium salts 163
6.4.3. Stability and safety issues 163
6.4.4. Gel polymer electrolytes 164
6.4.5. SPE-lithium metal polymer batteries 164
6.4.6. Organic salts developments 165
6.4.6.1. Modification of the polymer matrix 167
6.4.6.2. Transference number 168
6.5. Chemistry of LIBs: inert components 169
6.5.1. Separator 169
6.5.2. Binder 170
6.5.3. Conductive additives 171
6.5.4. Current collector 171
6.6. Lithium-aluminum/iron-sulfide (LiAl-FeS(2)) batteries 172
6.7. Sources of further information and advice 172
References and further reading 174
Chapter 7: Lithium-ion batteries (LIBs) for medium- and large-scale energy storage: emerging cell materials and components 232
7.1. Introduction 232
7.2. Anodes 232
7.2.1. Nanostructured and N-doped carbonaceous materials 232
7.2.2. Titanium dioxide (TiO2) 233
7.2.3. Silicon and silicon oxide (SiOx, x< 2)
7.2.4. Conversion materials 235
7.2.5. Combined conversion-alloying materials 235
7.3. Cathodes 236
7.3.1. High voltage cathodes 236
7.3.1.1. Transition metal substituted LiMn2O4 236
7.3.1.2. LiCoPO4 237
7.3.2. ``Lithium-rich´´ cathode layered composites xLi2MnO3(1-x)LiMO2 (M=Co, Ni, Mn) 238
7.3.3. Li2TMSiO4 (TM=Fe, Mn, Co) 239
7.3.4. Fluorine-containing polyanion-type cathode materials (tavorite, fluorosulfates) 239
7.3.5. Lithium vanadium phosphate (Li3V2(PO4)3) 240
7.3.6. Sulfur 242
7.3.7. Vanadium oxide (V2O5) 244
7.4. Electrolytes 245
7.4.1. Ionic liquids-based electrolytes 246
7.5. Inert components 248
7.5.1. Binder 248
7.5.2. Separator 248
7.5.3. Conductive additives 250
7.6. Sources of further information and advice 250
References and further reading 252
Part Three: Other types of batteries 310
Chapter 8: Zinc-based flow batteries for medium- and large-scale energy storage 312
8.1. Introduction 312
8.2. Zinc-bromine flow batteries 313
8.2.1. The negative electrode 314
8.2.2. The positive electrode 315
8.2.3. Cell performance 315
8.2.4. Conclusion and prospects 316
8.3. Zinc-cerium flow batteries 316
8.3.1. The negative electrode 317
8.3.2. The positive electrode 320
8.3.3. Cell performance 321
8.3.4. Conclusions and prospects 322
8.4. Zinc-air flow batteries 323
8.4.1. The negative electrode 323
8.4.2. The positive electrode 325
8.4.3. Cell developments 326
8.4.4. Conclusion and prospects 328
8.5. Other zinc-based flow batteries 328
References 330
Chapter 9: Polysulfide-bromine flow batteries (PBBs) for medium- and large-scale energy storage 336
9.1. Introduction 336
9.2. PBBs: principles and technologies 337
9.3. Electrolyte solution and its chemistry 338
9.3.1. The solution chemistry and electrochemistry of bromide ions 339
9.3.2. Solution chemistry and electrochemistry of polysulfides 339
9.4. Electrode materials 340
9.4.1. Bromine cathode materials 341
9.4.2. Sulfur anode materials 341
9.5. Ion-conductive membrane separators for PBBs 342
9.6. PBB applications and performance 343
9.7. Summary and future trends 344
References 345
Chapter 10: Vanadium redox flow batteries (VRBs) for medium- and large-scale energy storage 348
10.1. Introduction 348
10.2. Cell reactions, general features, and operating principles 349
10.2.1. Electrode reactions and cell potential 349
10.2.2. General features 351
10.2.3. Battery design and operation 352
10.3. Cell materials 354
10.3.1. Electrode materials 354
10.3.1.1. Electrode substrate materials and bipolar electrode development 355
10.3.2. Membrane materials 356
10.3.3. Capacity loss and side reactions 358
10.4. Electrolyte preparation and optimization 359
10.4.1. Electrolyte preparation 359
10.4.2. Electrolyte optimization 360
10.5. Cell and battery performance 363
10.6. State-of-charge (SOC) monitoring and flow rate control 368
10.7. Field trials, demonstrations, and commercialization 370
10.8. Other VRB chemistries 378
10.8.1. Generation 2 (G2V/Br RFB) vanadium/polyhalide redox flow battery 378
10.8.2. Generation 3 HCl and mixed H2SO4/HCl electrolyte-based redox flow batteries (G3 VRBs) 379
10.8.3. Fe/V and Fe-V/2V RFBs 382
10.8.4. Issues particularly relevant to the deployment of G2, G3, Fe/V, and Fe-V/2V RFBs 385
10.8.5. Comparison between G1, G2, G3, Fe/V, and Fe-V/2V VRBs 386
10.8.6. Vanadium oxygen redox fuel cell 386
10.8.7. Vanadium hydrogen redox fuel cell 389
10.9. Modeling and simulations 390
10.10. Cost considerations 393
10.10.1. Electrolyte cost 393
10.10.2. Stack costs 394
10.11. Conclusions 396
References 397
Chapter 11: Lithium-air batteries for medium- and large-scale energy storage 406
11.1. Introduction 406
11.2. Lithium ion batteries 406
11.3. Lithium oxygen battery 408
11.3.1. Introduction for lithium oxygen battery 408
11.3.2. Categories of lithium oxygen battery 408
11.3.3. Towards a liquid anode/solid-state electrolyte membrane/liquid cathode cell 411
11.4. Li-SES anode 414
11.4.1. Introduction to Li-SESs 414
11.4.2. Half-cell configuration and OCV measurements with Li-SES electrodes 415
11.4.3. Conductivity measurement of Li-SES 416
11.4.4. Liquid anode-liquid cathode full cell 418
11.4.4.1. Oxygen cathode 418
11.4.4.2. Iodine cathode 418
11.5. LiPON thin film and its application to the Li battery 421
11.5.1. LiPON thin film synthesis 421
11.5.2. LiPON thin film as electrolyte 425
11.5.3. LiPON thin film as a protecting layer 427
11.6. Carbon materials as cathode in Li-O2 battery 431
11.6.1. Surface area and porosity 432
11.6.2. Carbon microstructure 432
11.7. Fluorinated ether as an additive for the lithium oxygen battery 438
11.7.1. PFC additive in the Li-O2 battery 439
11.7.2. Investigating effect of PFC additive at different electrode thicknesses 442
11.7.3. Investigation of ORR with a well-defined GC electrode 444
11.7.3.1. Measurement of the oxygen diffusion coefficient and oxygen solubility in the electrolytes 445
11.7.3.2. Electrolyte stability: the stability of the PFC additive during ORR 447
11.8. Summary 449
Notes 449
References 450
Chapter 12: Zinc-air and other types of metal-air batteries 460
12.1. Introduction 460
12.2. Challenges in zinc-air cell chemistry 463
12.3. Advances in zinc-air batteries 468
12.3.1. Oxygen reduction electrodes 468
12.3.2. Zinc electrodes 471
12.3.3. Carbon dioxide scrubbing 473
12.4. Future trends in zinc-air batteries 475
12.5. Other metal-air batteries 475
References 478
Chapter 13: Aluminum-ion batteries for medium- and large-scale energy storage 482
13.1. Introduction 482
13.2. Al-ion battery chemistry 484
13.3. Conclusions 491
Acknowledgments 491
References 492
Part Four: Design issues and applications 494
Chapter 14: Advances in membrane and stack design of redox flow batteries (RFBs) for medium- and large-scale energy storage 496
14.1. Introduction 496
14.2. Membranes used in redox flow batteries 499
14.2.1. Introduction to ion-exchange membranes 499
14.2.2. Types of ion-exchange membranes 501
14.2.3. Preparation of ion-exchange membranes 503
14.2.4. Properties of ion-exchange membranes 505
14.2.4.1. Ion-exchange capacity 506
14.2.4.2. Proton conductivity 507
14.2.4.3. Swelling ratio 508
14.2.4.4. Ion diffusivity 508
14.3. Membrane evaluation in vanadium redox flow batteries 509
14.4. Research and development on membranes for redox flow battery applications 509
14.4.1. Cation exchange membranes (CEM) 511
14.4.1.1. Review of nafion and its modifications 511
14.4.1.2. Review of SPEEK and its modifications 514
14.4.1.3. Other CEM 515
14.4.2. Anion-exchange membranes (AEM) 516
14.4.3. Amphoteric membranes 517
14.4.4. Nonionic microporous separators and membranes 518
14.5. Chemical stability of membranes 519
14.6. Conclusion 521
References 522
Chapter 15: Modeling the design of batteries for medium- and large-scale energy storage 528
15.1. Introduction 528
15.2. The main components of lithium-ion batteries (LIBs) 530
15.3. The use of density functional theory (DFT) to analyze LIB materials 533
15.4. Structure-property relationships of electrode materials 535
15.5. Structure-property relationships of polyanionic compounds used in LIBs 539
15.6. Analyzing electron density and structure modification in LIB materials 543
15.7. Structure-property relationships in organic-based electrode materials for LIBs 546
15.8. Modeling specific power and rate capability: ionic and electronic conductivity 549
15.8.1. Ionic conductivity 549
15.8.2. Electronic conductivity 553
15.9. Modeling intercalation or conversion reactions in LIB materials 553
15.10. Modeling solid-electrolyte interphase (SEI) formation 556
15.11. Modeling microstructural properties in LIB materials 557
15.12. Modeling thermomechanical stresses in LIB materials 561
15.13. Multiscale modeling of LIB performance 564
15.14. Modeling emerging battery technologies: lithium-air batteries (LABs), all solid-state LIBs, and redox flow batteries 568
15.14.1. Lithium-air batteries 568
15.14.2. All solid-state LIBs 572
15.14.3. Redox-flow batteries 573
15.15. Conclusions 574
References 576
Chapter 16: Batteries for remote area power (RAP) supply systems 582
16.1. Introduction 582
16.2. Components of a RAPS system 585
16.2.1. System design considerations 586
16.3. Existing battery systems for RAPS 586
16.3.1. Lead acid 586
16.3.2. Nickel based 588
16.3.2.1. Nickel cadmium (Ni-Cd) 588
16.3.2.2. Nickel metal hydride 590
16.3.3. Lithium ion 592
16.3.4. Flow batteries 594
16.3.4.1. Vanadium redox 594
16.3.4.2. Zinc bromine 595
16.3.5. Sodium sulfur 596
16.3.6. Battery technology comparison 598
16.4. Future considerations 598
16.4.1. Improvements to existing battery technologies 598
16.4.2. Hydrogen storage as an alternative energy storage system 601
16.5. Concluding remarks 602
References 603
Chapter 17: Applications of batteries for grid-scale energy storage 606
17.1. Introduction 606
17.2. Storage and electricity grids 606
17.2.1. Background to electricity networks 607
17.2.2. Load curves, summer/winter peaks, ancillary services 607
17.2.3. Electricity pricing 608
17.3. The need for storage 609
17.3.1. Frequency and voltage regulation 611
17.3.2. Renewables integration 612
17.3.3. Capital deferment: peak shaving and load leveling 613
17.4. Battery technologies 614
17.4.1. Lithium 614
17.4.2. Flow batteries 616
17.4.3. High-temperature batteries 616
17.4.4. Other advanced batteries 617
17.4.5. Supercapacitors 618
17.5. The effect of battery storage on the system 619
17.5.1. Losses 620
17.5.2. Greenhouse gas emissions 621
17.6. Location of storage 621
17.7. Regulatory and economic issues 622
17.7.1. Economics 623
17.7.2. Ownership 624
17.7.3. Regulatory influence 624
17.8. Sources of further information and advice 624
References 625
Index 628

Woodhead Publishing Series in Energy


1 Generating power at high efficiency: Combined cycle technology for sustainable energy production
Eric Jeffs

2 Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment
Edited by Kenneth L. Nash and Gregg J. Lumetta

3 Bioalcohol production: Biochemical conversion of lignocellulosic biomass
Edited by Keith W. Waldron

4 Understanding and mitigating ageing in nuclear power plants: Materials and operational aspects of plant life management (PLiM)
Edited by Philip G. Tipping

5 Advanced power plant materials, design and technology
Edited by Dermot Roddy

6 Stand-alone and hybrid wind energy systems: Technology, energy storage and applications
Edited by John K. Kaldellis

7 Biodiesel science and technology: From soil to oil
Jan C. J. Bart, Natale Palmeri and Stefano Cavallaro

8 Developments and innovation in carbon dioxide (CO2) capture and storage technology Volume 1: Carbon dioxide (CO2) capture, transport and industrial applications
Edited by M. Mercedes Maroto-Valer

9 Geological repository systems for safe disposal of spent nuclear fuels and radioactive waste
Edited by Joonhong Ahn and Michael J. Apted

10 Wind energy systems: Optimising design and construction for safe and reliable operation
Edited by John D. Sørensen and Jens N. Sørensen

11 Solid oxide fuel cell technology: Principles, performance and operations
Kevin Huang and John Bannister Goodenough

12 Handbook of advanced radioactive waste conditioning technologies
Edited by Michael I. Ojovan

13 Membranes for clean and renewable power applications
Edited by Annarosa Gugliuzza and Angelo Basile

14 Materials for energy efficiency and thermal comfort in buildings
Edited by Matthew R. Hall

15 Handbook of biofuels production: Processes and technologies
Edited by Rafael Luque, Juan Campelo and James Clark

16 Developments and innovation in carbon dioxide (CO2) capture and storage technology Volume 2: Carbon dioxide (CO2) storage and utilisation
Edited by M. Mercedes Maroto-Valer

17 Oxy-fuel combustion for power generation and carbon dioxide (CO2) capture
Edited by Ligang Zheng

18 Small and micro combined heat and power (CHP) systems: Advanced design, performance, materials and applications
Edited by Robert Beith

19 Advances in clean hydrocarbon fuel processing: Science and technology
Edited by M. Rashid Khan

20 Modern gas turbine systems: High efficiency, low emission, fuel flexible power generation
Edited by Peter Jansohn

21 Concentrating solar power technology: Principles, developments and applications
Edited by Keith Lovegrove and Wes Stein

22 Nuclear corrosion science and engineering
Edited by Damien Féron

23 Power plant life management and performance improvement
Edited by John E. Oakey

24 Electrical drives for direct drive renewable energy systems
Edited by Markus Mueller and Henk Polinder

25 Advanced membrane science and technology for sustainable energy and environmental applications
Edited by Angelo Basile and Suzana Pereira Nunes

26 Irradiation embrittlement of reactor pressure vessels (RPVs) in nuclear power plants
Edited by Naoki Soneda

27 High temperature superconductors (HTS) for energy applications
Edited by Ziad Melhem

28 Infrastructure and methodologies for the justification of nuclear power programmes
Edited by Agustín Alonso

29 Waste to energy conversion technology
Edited by Naomi B. Klinghoffer and Marco J. Castaldi

30 Polymer electrolyte membrane and direct methanol fuel cell technology Volume 1: Fundamentals and performance of low temperature fuel cells
Edited by Christoph Hartnig and Christina Roth

31 Polymer electrolyte membrane and direct methanol fuel cell technology Volume 2: In situ characterization techniques for low temperature fuel cells
Edited by Christoph Hartnig and Christina Roth

32 Combined cycle systems for near-zero emission power generation
Edited by Ashok D. Rao

33 Modern earth buildings: Materials, engineering, construction and applications
Edited by Matthew R. Hall, Rick Lindsay and Meror Krayenhoff

34 Metropolitan sustainability: Understanding and improving the urban environment
Edited by Frank Zeman

35 Functional materials for sustainable energy applications
Edited by John A. Kilner, Stephen J. Skinner, Stuart J. C. Irvine and Peter P. Edwards

36 Nuclear decommissioning: Planning, execution and international experience
Edited by Michele Laraia

37 Nuclear fuel cycle science and engineering
Edited by Ian Crossland

38 Electricity transmission, distribution and storage systems
Edited by Ziad Melhem

39 Advances in biodiesel production: Processes and technologies
Edited by Rafael Luque and Juan A. Melero

40 Biomass combustion science, technology and engineering
Edited by Lasse Rosendahl

41 Ultra-supercritical coal power plants: Materials, technologies and optimisation
Edited by Dongke Zhang

42 Radionuclide behaviour in the natural environment: Science, implications and lessons for the nuclear industry
Edited by Christophe Poinssot and Horst Geckeis

43 Calcium and chemical looping technology for power generation and carbon dioxide (CO2) capture: Solid oxygen- and CO2-carriers
Paul Fennell and E. J. Anthony

44 Materials’ ageing and degradation in light water reactors: Mechanisms, and management
Edited by K. L. Murty

45 Structural alloys for power plants: Operational challenges and high-temperature materials
Edited by Amir Shirzadi and Susan Jackson

46 Biolubricants: Science and technology
Jan C. J. Bart, Emanuele Gucciardi and Stefano Cavallaro

47 Advances in wind turbine blade design and materials
Edited by Povl Brøndsted and Rogier P. L. Nijssen

48 Radioactive waste management and contaminated site clean-up: Processes, technologies and international experience
Edited by William E. Lee, Michael I. Ojovan, Carol M. Jantzen

49 Probabilistic safety assessment for optimum nuclear power plant life management (PLiM): Theory and application of reliability analysis methods for major power...

Erscheint lt. Verlag 19.12.2014
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 1-78242-022-3 / 1782420223
ISBN-13 978-1-78242-022-4 / 9781782420224
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 28,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 21,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99
200 Aufgaben zum sicheren Umgang mit Quellen ionisierender Strahlung

von Jan-Willem Vahlbruch; Hans-Gerrit Vogt

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
34,99