Hydrological Data Driven Modelling (eBook)

A Case Study Approach
eBook Download: PDF
2014 | 2015
XV, 250 Seiten
Springer International Publishing (Verlag)
978-3-319-09235-5 (ISBN)

Lese- und Medienproben

Hydrological Data Driven Modelling - Renji Remesan, Jimson Mathew
Systemvoraussetzungen
106,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book explores a new realm in data-based modeling with applications to hydrology. Pursuing a case study approach, it presents a rigorous evaluation of state-of-the-art input selection methods on the basis of detailed and comprehensive experimentation and comparative studies that employ emerging hybrid techniques for modeling and analysis. Advanced computing offers a range of new options for hydrologic modeling with the help of mathematical and data-based approaches like wavelets, neural networks, fuzzy logic, and support vector machines. Recently machine learning/artificial intelligence techniques have come to be used for time series modeling. However, though initial studies have shown this approach to be effective, there are still concerns about their accuracy and ability to make predictions on a selected input space.



Dr Renji Remesan is a research fellow in Cranfield Water Science Institute at Cranfield University in United Kingdom. Dr Remesan's research interests include non-linear modelling of hydro-metrological time series, artificial intelligence in hydrology, numerical weather modelling and river basin/catchment modelling using physically/ conceptual lumped models and distributed hydrological models. He is an Associate Fellow of the UK Higher Education Academy and editorial member of the Journal of Earth science and Climate change. He holds a PhD from the University of Bristol and an M.Tech from the Indian Institute of Technology, Kharagpur.

Dr Jimson Mathew received a PhD in Computer Science from University of Bristol, UK. He has held positions with the Centre for Wireless Communications, National University of Singapore, Bell Laboratories Research (Lucent Technologies) North Ryde, Australia and Royal Institute of Technology (KTH), Stockholm, Sweden.  Since 2005, he has been with the Department of Computer Science, University of Bristol, UK. His research interest primarily focuses on Fault-tolerant Computing.

Dr Renji Remesan is a research fellow in Cranfield Water Science Institute at Cranfield University in United Kingdom. Dr Remesan’s research interests include non-linear modelling of hydro-metrological time series, artificial intelligence in hydrology, numerical weather modelling and river basin/catchment modelling using physically/ conceptual lumped models and distributed hydrological models. He is an Associate Fellow of the UK Higher Education Academy and editorial member of the Journal of Earth science and Climate change. He holds a PhD from the University of Bristol and an M.Tech from the Indian Institute of Technology, Kharagpur.Dr Jimson Mathew received a PhD in Computer Science from University of Bristol, UK. He has held positions with the Centre for Wireless Communications, National University of Singapore, Bell Laboratories Research (Lucent Technologies) North Ryde, Australia and Royal Institute of Technology (KTH), Stockholm, Sweden.  Since 2005, he has been with the Department of Computer Science, University of Bristol, UK. His research interest primarily focuses on Fault-tolerant Computing.

Introduction.- Hydroinformatics and Data based Modelling Issues in Hydrology.- Hydroinformatics and Data based Modelling Issues in Hydrology.- Model Data Selection and Data Pre-processing Approaches.- Machine Learning and Artificial Intelligence Based Approaches.- Data based Solar Radiation Modelling.- Data based Rainfall-Runoff Modelling.- Data based Evapotranspiration Modelling.- Application of Statistical Blockade in Hydrology.

Erscheint lt. Verlag 3.11.2014
Reihe/Serie Earth Systems Data and Models
Earth Systems Data and Models
Zusatzinfo XV, 250 p. 172 illus., 59 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Geowissenschaften Geologie
Technik
Schlagworte Applied hydrology • Artificial intelligence in hydrology • Evapotranspiration modelling • hydrogeology • Hydrologic Modelling • Rainfall-Runoff modelling • solar radiation • Support vector • Time series modelling
ISBN-10 3-319-09235-9 / 3319092359
ISBN-13 978-3-319-09235-5 / 9783319092355
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 10,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich