Alternative Energy in Power Electronics -

Alternative Energy in Power Electronics (eBook)

Muhammad H. Rashid (Herausgeber)

eBook Download: PDF | EPUB
2014 | 1. Auflage
378 Seiten
Elsevier Science (Verlag)
978-0-12-409534-2 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
74,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This new resource is a practical overview of designing, testing and troubleshooting power electronics in alternative energy systems, providing you with the most important information on how power electronics components such as inverters, controllers and batteries can play a pivotal role in the successful implementation of green energy solutions for both stand-alone and grid-connected applications. You will learn how to choose the right components for diverse systems, from utility-scale wind farms to photovoltaic panels on single residences, how to get the most out of existing systems, and how to solve the tough challenges particular to alternative energy applications. Whether you are a renewables professional who needs to understand more about how power electronics impact energy output, or a power engineer who is interested in learning what new avenues the alternative energy revolution is opening for your work, start here with advice and explanations from the experts, including equations, diagrams and tables designed to help you understand and succeed.
  • Provides a thorough overview of the key technologies, methods and challenges for implementing power electronics in alternative energy systems for optimal power generation
  • Includes hard-to-find information on how to apply converters, inverters, batteries, controllers and more for stand-alone and grid-connected systems
  • Covers wind and solar applications, as well as ocean and geothermal energy, hybrid systems and fuel cells

This new resource is a practical overview of designing, testing and troubleshooting power electronics in alternative energy systems, providing you with the most important information on how power electronics components such as inverters, controllers and batteries can play a pivotal role in the successful implementation of green energy solutions for both stand-alone and grid-connected applications. You will learn how to choose the right components for diverse systems, from utility-scale wind farms to photovoltaic panels on single residences, how to get the most out of existing systems, and how to solve the tough challenges particular to alternative energy applications. Whether you are a renewables professional who needs to understand more about how power electronics impact energy output, or a power engineer who is interested in learning what new avenues the alternative energy revolution is opening for your work, start here with advice and explanations from the experts, including equations, diagrams and tables designed to help you understand and succeed. Provides a thorough overview of the key technologies, methods and challenges for implementing power electronics in alternative energy systems for optimal power generation Includes hard-to-find information on how to apply converters, inverters, batteries, controllers and more for stand-alone and grid-connected systems Covers wind and solar applications, as well as ocean and geothermal energy, hybrid systems and fuel cells

Front Cover 1
Alternative Energy in Power Electronics 4
Copyright 5
Contents 6
Contributors 12
Preface 14
Chapter 1: Power Electronics for Renewable Energy Sources 16
1.1 Introduction 17
1.2 Power Electronics for Photovoltaic Power Systems 18
1.2.1 Basics of Photovoltaics 18
1.2.2 Types of PV Power Systems 21
1.2.3 Stand-alone PV Systems 24
1.2.3.1 Battery Charging 24
1.2.3.2 Inverters for Stand-alone PV Systems 30
1.2.3.3 Solar Water Pumping 33
1.2.4 Hybrid Energy Systems 40
1.2.4.1 Series Configuration 41
1.2.4.2 Switched Configuration 42
1.2.4.3 Parallel Configuration 43
1.2.4.4 Control of Hybrid Energy Systems 45
1.2.5 Grid-connected PV Systems 47
1.2.5.1 Inverters for Grid-connected Applications 48
1.2.5.2 Inverter Classifications 48
1.2.5.3 Inverter Types 49
1.2.5.4 Power Control through PV Inverters 55
1.2.5.5 System Configurations 60
1.2.5.6 Grid-compatible Inverters Characteristics 62
1.3 Power Electronics for Wind Power Systems 64
1.3.1 Basics of Wind Power 66
1.3.1.1 Types of Wind Turbines 68
1.3.1.2 Types of Wind Generators 69
1.3.2 Types of Wind Power Systems 73
1.3.3 Stand-alone Wind Power Systems 73
1.3.3.1 Battery Charging with Stand-alone Wind Energy System 73
1.3.3.2 Wind Turbine Charge Controller 73
1.3.4 Wind–diesel Hybrid Systems 74
1.3.5 Grid-connected Wind Energy Systems 75
1.3.5.1 Soft Starters for Induction Generators 76
1.3.6 Control of Wind Turbines 77
1.3.6.1 Fixed Speed Wind Turbines 77
1.3.6.2 Variable Speed Wind Turbines 80
1.3.6.3 Discretely Variable Speed Systems 81
1.3.6.4 Continuously Variable Speed Systems 82
1.3.6.5 Types of Generator Options for Variable Speed WindTurbines Using Power Electronics 85
1.3.6.6 Isolated Grid Supply System with Multiple Wind Turbines 88
1.3.6.7 Power Electronics Technology Development 89
References 90
Chapter 2: Energy Sources 96
2.1 Introduction 97
2.2 Available Energy Sources 104
2.2.1 Coal 104
2.2.2 Oil 104
2.2.3 Natural Gas 105
2.2.4 Hydropower 105
2.2.5 Nuclear Power 105
2.2.6 Solar 106
2.2.7 Wind 106
2.2.8 Ocean 106
2.2.9 Hydrogen 107
2.2.10 Geothermal 108
2.2.11 Biomass 108
2.3 Electric Energy Generation Technologies 109
2.3.1 Thermoelectric Energy 109
2.3.2 Hydroelectric Energy 112
2.3.3 Solar Energy Conversion and Photovoltaic Systems 114
2.3.3.1 Photovoltaic Effect and Semiconductor Structure of PVs 114
2.3.3.2 PV Cell/Module/Array Structures 115
2.3.3.3 Active and Passive Solar Energy Systems 115
2.3.3.4 Components of a Complete Solar Electrical Energy System 116
2.3.3.5 I-V Characteristics of Photovoltaic (PV) Systems,PV Models, and Equivalent PV Circuit 117
2.3.3.6 Sun Tracking Systems 118
2.3.3.7 Maximum Power Point Tracking Techniques 119
2.3.3.8 Power Electronic Interfaces for PV Systems 122
2.3.4 Wind Turbines and Wind Energy Conversion Systems 126
2.3.4.1 Wind Turbine Power 128
2.3.4.2 Different Electrical Machines in Wind Turbines 130
2.3.4.3 Energy Storage Applications for Wind Turbines 135
2.3.5 Ocean Energy Harvesting 137
2.3.5.1 Ocean Wave Energy 137
2.3.5.2 Ocean Tidal Energy 144
2.3.5.3 Power Electronic Interfaces for Ocean Energy HarvestingApplications 146
2.3.6 Geothermal Energy Systems 148
2.3.7 Nuclear Power Plants 151
2.3.8 Fuel Cell Power Plants 153
2.4 Other Unconventional Energy Sources and Generation Technologies 157
Summary 157
References 158
Chapter 3: Photovoltaic System Conversion 170
3.1 Introduction 170
3.2 Solar Cell Characteristics 171
3.3 Photovoltaic Technology Operation 175
3.4 Maximum Power Point Tracking Components 176
3.4.1 Voltage Feedback Control 177
3.4.2 Power Feedback Control 177
3.5 MPPT Controlling Algorithms 177
3.5.1 Perturb and Observe (PAO) 177
3.5.2 Incremental Conductance Technique (ICT) 178
3.5.3 Constant Reference 179
3.5.4 Current-Based Maximum Power Point Tracker 179
3.5.5 Voltage-Based Maximum Power Point Tracker 180
3.5.6 Other Methods 180
3.6 Photovoltaic Systems' Components 181
3.6.1 Grid-Connected Photovoltaic System 181
3.6.2 Stand-Alone Photovoltaic Systems 184
3.7 Factors Affecting PV Output 185
3.7.1 Temperature 186
3.7.2 Dirt and Dust 186
3.7.3 DC–AC Conversion 186
3.8 PV System Design 186
3.8.1 Criteria for a Quality PV System 186
3.8.2 Design Procedures 186
3.8.3 Power-Conditioning Unit 187
3.8.4 Battery Sizing 187
Summary 187
References 187
Chapter 4: Wind Turbine Applications 192
4.1 Wind Energy Conversion Systems 193
4.1.1 Horizontal-axis Wind Turbine 193
4.1.1.1 The Rotor 194
4.1.1.2 The Gearbox 196
4.1.1.3 The Generator 196
4.1.1.4 Power Electronic Conditioner 198
4.1.2 Simplified Model of a Wind Turbine 198
4.1.3 Control of Wind Turbines 200
4.1.3.1 Variable Speed Variable Pitch Wind Turbine 201
4.2 Power Electronic Converters for Variable Speed Wind Turbines 203
4.2.1 Introduction 203
4.2.2 Full Power Conditioner System for Variable Speed Turbines 204
4.2.2.1 Double Three Phase Voltage Source ConverterConnected by a DC-link 205
4.2.2.2 Step-up Converter and Full Power Converter 210
4.2.2.3 Grid Connection Conditioning System 211
4.2.3 Rotor Connected Power Conditioner for Variable Speed Wind Turbines 213
4.2.3.1 Slip Power Dissipation 214
4.2.3.2 Single Doubly Fed Induction Machine 217
4.2.3.3 Power Converter in Wound-rotor Machines 218
4.2.3.4 Control of Wound-rotor Machines 220
4.2.4 Grid Connection Standards for WindFarms 223
4.2.4.1 Voltage Dip Ride-through Capability of Wind Turbines 223
4.2.4.2 Power Quality Requirements for Grid-connectedWind Turbines 225
4.3 Multilevel Converter for Very High Power Wind Turbines 226
4.3.1 Multilevel Topologies 226
4.3.2 Diode Clamp Converter (DCC) 226
4.3.3 Full Converter for Wind Turbine Based on Multilevel Topology 228
4.3.4 Modeling 229
4.3.5 Control 231
4.3.5.1 Rectifier Control 231
4.3.5.2 Inverter Control 232
4.3.5.3 Sum of the Capacitor Voltages Control 232
4.3.5.4 Difference of the Capacitor Voltages Control 232
4.3.5.5 Modulation 233
4.3.6 Application Example 233
4.4 Electrical System of a WindFarm 235
4.4.1 Electrical Schematic of a Wind Farm 235
4.4.2 Protection System 237
4.4.3 Electrical System Safety: Hazards and Safeguards 237
4.5 Future Trends 237
4.5.1 Semiconductors 237
4.5.2 Power Converters 239
4.5.3 Control Algorithms 239
4.5.4 Offshore and Onshore Wind Turbines 240
Nomenclature 240
References 243
Chapter 5: High-Frequency-Link Power-Conversion Systems for Next-Generation 246
5.1 Introduction 247
5.2 Low-Cost Single-StageInverter 249
5.2.1 Operating Modes 249
5.2.2 Analysis 251
5.2.3 Design Issues 252
5.2.3.1 Choice of Transformer Turns-Ratio and Duty-RatioCalculation 252
5.2.3.2 Lossless Active-Clamp Circuit to Reduce Turn-Off Losses 253
5.3 Ripple-Mitigating Inverter 256
5.3.1 Zero-Ripple Boost Converter (ZRBC) 257
5.3.1.1 HF Current-Ripple Reduction 258
5.3.1.2 Active Power Filter 261
5.3.2 HF Two-Stage DC–AC Converter 262
5.4 Universal Power Conditioner 262
5.4.1 Operating Modes 265
5.4.2 Design Issues 269
5.4.2.1 Duty-Ratio Loss 269
5.4.2.2 Optimization of the Transformer Leakage Inductance 271
5.4.2.3 Transformer Tapping 272
5.4.2.4 Effects of Resonance between the Transformer LeakageInductance and the Output Capacitance of the AC–AC-ConverterSwitches 273
5.5 Hybrid-Modulation-Based Multiphase HFL High-Power Inverter 274
5.5.1 Principles ofOperation 275
5.5.1.1 Three-Phase DC–AC Inverter 275
5.5.1.2 Switching Strategy for the AC–AC Converter 276
Acknowledgement 280
Copyright Disclosure 280
References 280
Chapter 6: Energy Storage 282
6.1 Introduction 283
6.2 Energy Storage Elements 284
6.2.1 Battery Storage 284
6.2.1.1 Lead Acid Batteries 284
6.2.1.2 Nickel-Cadmium (Ni-Cd) and Nickel-Metal Hydride(Ni-MH) Batteries 285
6.2.1.3 Lithium-Ion (Li-Ion) Batteries 286
6.2.2 Ultracapacitor (UC) 286
6.2.3 Flow Batteries and Regenerative Fuel Cells (RFC) 288
6.2.4 Fuel Cells (FC) 289
6.3 Modeling of Energy Storage Devices 291
6.3.1 Battery Modeling 291
6.3.1.1 Ideal Model 291
6.3.1.2 Linear Model 291
6.3.1.3 Thevenin Model 291
6.3.2 Electrical Modeling of Fuel Cell Power Sources 293
6.3.3 Electrical Modeling of Photovoltaic (PV) Cells 295
6.3.4 Electrical Modeling of Ultracapacitors (UCs) 297
6.3.4.1 Double Layer UC Model 298
6.3.4.2 Battery/UC Hybrid Model 299
6.3.5 Electrical Modeling of Flywheel Energy Storage Systems (FESS) 301
6.4 Hybridization of Energy Storage Systems 303
6.5 Energy Management and Control Strategies 305
6.5.1 Battery StateMonitoring 306
6.5.2 Cell Balancing 308
6.6 Power Electronics for Energy Storage Systems 311
6.6.1 Advantages and Disadvantages of Li-Ion Battery Packs for HEV/PHEV Applications 312
6.6.2 Operational Characteristics of Classic and Advanced Power Electronic Cell Voltage Equalizers 313
6.6.2.1 Basic Inductive Equalizer 314
6.6.2.2 Cuk Equalizer 315
6.6.2.3 Transformer-Based Equalizer 316
6.7 Practical Case Studies 317
6.7.1 Hybrid Electric and Plug-in Hybrid Electric Vehicles (HEV/PHEV) 317
6.7.2 Fuel Cells for Automotive and Renewable Energy Applications 321
6.7.2.1 Phosphoric Acid Fuel Cell (PAFC) 325
6.7.2.2 Molten Carbonate Fuel Cell (MCFC) 325
6.7.2.3 Solid Oxide Fuel Cell (SOFC) 325
6.7.2.4 Proton Exchange Membrane Fuel Cell (PEMFC) 326
6.7.3 Fuel-Cell-Based Hybrid DG Systems 326
6.7.3.1 Fuel Cell/Microturbine Hybrid DG System 326
6.7.3.2 Fuel Cell/Photovoltaic (PV) Hybrid DG System 327
Summary 328
References 329
Chapter 7: Electric Power Transmission 332
7.1 Elements of Power System 332
7.2 Generators and Transformers 333
7.3 Transmission Line 337
7.3.1 Aluminum Conductor Steel-Reinforced, ACSR 338
7.4 Factors That Limit Power Transfer in Transmission Line 338
7.4.1 Static and Dynamic Thermal Rating 338
7.4.2 Thermal Rating 339
7.4.3 Convection Heat Loss 340
7.4.4 Radiative Heat Loss 341
7.4.5 Solar Heat Gain 342
7.4.6 Ohmic Losses (I2R(Tc)) Heat Gain 343
7.5 Effect of Temperature on Conductor Sag or Tension 343
7.5.1 Conductor Temperature and Sag Relationship 343
7.6 Standard and Guidelines on Thermal Rating Calculation 347
7.7 Optimizing Power Transmission Capacity 348
7.7.1 Overview of Dynamic Thermal Current Rating of Transmission Line 348
7.7.2 Example of Dynamic Thermal Current Rating of Transmission Line 352
7.8 Overvoltages and Insulation Requirements of Transmission Lines 353
7.8.1 Overvoltage Phenomena by Lightning Strikes 355
7.8.2 Switching Surges 358
7.8.3 TemporaryOvervoltage 359
7.9 Methods of Controlling Overvoltages 359
7.10 Insulation Coordination 360
References 362
Index 364

Chapter 1

Power Electronics for Renewable Energy Sources


C.V. Nayar; S.M. Islam; H. Dehbonei; K. Tan    Department of Electrical and Computer Engineering, Curtin University of Technology, Perth, Western Australia, Australia

H. Sharma    Research Institute for Sustainable Energy, Murdoch University, Perth, Western Australia, Australia

Abstract


This chapter focuses on solar photovoltaic and wind power. Stand-alone PV energy system requires storage to meet the energy demand during periods of low solar irradiation and nighttime. Blocking diodes in series with PV modules are used to prevent the batteries from being discharged through the PV cells at night when there is no sun available to generate energy. Two of the main factors that have been identified as limiting criteria for the cycle life of batteries in PV power systems are incomplete charging and prolonged operation at a low state of charge. The power output of the PV array is sampled at an every definite sampling period and compared with the previous value. Voltage source inverters are usually used in stand-alone applications. They can be single phase or three phase. There are three switching techniques commonly used: square wave, quasi-square wave, and pulse width modulation. Centrifugal pumps are used for low-head applications especially if they are directly interfaced with the solar panels. Centrifugal pumps are designed for fixed-head applications and the pressure difference generated increases in relation to the speed of pump.

Keywords

Power electronics

Renewable energy sources

Photovoltaics

Wind

Solar

Chapter Outline

1.1 Introduction   2

1.2 Power Electronics for Photovoltaic Power Systems   3

1.2.1 Basics of Photovoltaics   3

1.2.2 Types of PV Power Systems   6

1.2.3 Stand-alone PV Systems   9

1.2.3.1 Battery Charging   9

1.2.3.2 Inverters for Stand-alone PV Systems   15

1.2.3.3 Solar Water Pumping   18

1.2.4 Hybrid Energy Systems   25

1.2.4.1 Series Configuration   26

1.2.4.2 Switched Configuration   27

1.2.4.3 Parallel Configuration   28

1.2.4.4 Control of Hybrid Energy Systems   30

1.2.5 Grid-connected PV Systems   32

1.2.5.1 Inverters for Grid-connected Applications   33

1.2.5.2 Inverter Classifications   33

1.2.5.3 Inverter Types   34

1.2.5.4 Power Control through PV Inverters   40

1.2.5.5 System Configurations   45

1.2.5.6 Grid-compatible Inverters Characteristics   47

1.3 Power Electronics for Wind Power Systems   49

1.3.1 Basics of Wind Power   51

1.3.1.1 Types of Wind Turbines   53

1.3.1.2 Types of Wind Generators   54

1.3.2 Types of Wind Power Systems   58

1.3.3 Stand-alone Wind Power Systems   58

1.3.3.1 Battery Charging with Stand-alone Wind Energy System   58

1.3.3.2 Wind Turbine Charge Controller   58

1.3.4 Wind-diesel Hybrid Systems   59

1.3.5 Grid-connected Wind Energy Systems   60

1.3.5.1 Soft Starters for Induction Generators   61

1.3.6 Control of Wind Turbines   62

1.3.6.1 Fixed Speed Wind Turbines   62

1.3.6.2 Variable Speed Wind Turbines   65

1.3.6.3 Discretely Variable Speed Systems   66

1.3.6.4 Continuously Variable Speed Systems   67

1.3.6.5 Types of Generator Options for Variable Speed Wind Turbines Using Power Electronics   70

1.3.6.6 Isolated Grid Supply System with Multiple Wind Turbines   73

1.3.6.7 Power Electronics Technology Development   74

References   75

1.1 Introduction


The Kyoto agreement on global reduction of greenhouse gas emissions has prompted renewed interest in renewable energy systems worldwide. Many renewable energy technologies today are well developed, reliable, and cost competitive with the conventional fuel generators. The cost of renewable energy technologies is on a falling trend and is expected to fall further as demand and production increases. There are many renewable energy sources (RES) such as biomass, solar, wind, mini hydro and tidal power. However, solar and wind energy systems make use of advanced power electronics technologies and, therefore the focus in this chapter will be on solar photovoltaic and wind power.

One of the advantages offered by (RES) is their potential to provide sustainable electricity in areas not served by the conventional power grid. The growing market for renewable energy technologies has resulted in a rapid growth in the need of power electronics. Most of the renewable energy technologies produce DC power and hence power electronics and control equipment are required to convert the DC into AC power.

Inverters are used to convert DC to AC. There are two types of inverters: (a) stand-alone or (b) grid-connected. Both types have several similarities but are different in terms of control functions. A stand-alone inverter is used in off-grid applications with battery storage. With back-up diesel generators (such as photovoltaic (PV)/diesel/hybrid power systems), the inverters may have additional control functions such as operating in parallel with diesel generators and bi-directional operation (battery charging and inverting). Grid interactive inverters must follow the voltage and frequency characteristics of the utility generated power presented on the distribution line. For both types of inverters, the conversion efficiency is a very important consideration. Details of standalone and grid-connected inverters for PV and wind applications are discussed in this chapter.

Section 1.2 covers stand-alone PV system applications such as battery charging and water pumping for remote areas. This section also discusses power electronic converters suitable for PV-diesel hybrid systems and grid-connected PV for rooftop and large-scale applications. Of all the renewable energy options, the wind turbine technology is maturing very fast. A marked rise in installed wind power capacity has been noticed worldwide in the last decade. Per unit generation cost of wind power is now quite comparable with the conventional generation. Wind turbine generators are used in stand-alone battery charging applications, in combination with fossil fuel generators as part of hybrid systems and as grid-connected systems. As a result of advancements in blade design, generators, power electronics, and control systems, it has been possible to increase dramatically the availability of large-scale wind power. Many wind generators now incorporate speed control mechanisms like blade pitch control or use converters/inverters to regulate power output from variable speed wind turbines. In Section 1.3, electrical and power conditioning aspects of wind energy conversion systems were included.

1.2 Power electronics for photovoltaic power systems


1.2.1 Basics of photovoltaics


The density of power radiated from the sun (referred as “solar energy constant”) at the outer atmosphere is 1.373 kW/m2. Part of this energy is absorbed and scattered by the earth's atmosphere. The final incident sunlight on earth's surface has a peak density of 1 kW/m2 at noon in the tropics. The technology of photovoltaics (PV) is essentially concerned with the conversion of this energy into usable electrical form. Basic element of a PV system is the solar cell. Solar cells can convert the energy of sunlight directly into electricity. Consumer appliances used to...

Erscheint lt. Verlag 28.10.2014
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
ISBN-10 0-12-409534-8 / 0124095348
ISBN-13 978-0-12-409534-2 / 9780124095342
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 17,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 18,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99
200 Aufgaben zum sicheren Umgang mit Quellen ionisierender Strahlung

von Jan-Willem Vahlbruch; Hans-Gerrit Vogt

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
34,99