Nanomaterials and Devices -  Donglu Shi

Nanomaterials and Devices (eBook)

(Autor)

eBook Download: PDF | EPUB
2014 | 1. Auflage
372 Seiten
Elsevier Science (Verlag)
978-1-4557-7749-5 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
97,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Introducing the fields of nanomaterials and devices, and their applications across a wide range of academic disciplines and industry sectors, Donglu Shi bridges knowledge acquisition and practical work, providing a starting point for the research and development of applications.

The book describes characterization of nanomaterials, their preparation methods and performance testing techniques; the design and development of nano-scale devices; and the applications of nanomaterials, with examples taken from different industry sectors, such as lighting, energy, bioengineering and medicine / medical devices.

Key nanomaterial types are covered, such as carbon nanotubes, nanobiomaterials, nano-magnetic materials, semiconductor materials and nanocomposites. Shi also provides detailed coverage of key emerging technologies such as DNA nanotechnology and spintronics. The resulting text is equally relevant for advanced students (senior and graduate) and for engineers and scientists from a variety of different academic backgrounds working in the multi-disciplinary field of nanotechnology.


  • Provides detailed guidance for the characterization of nanomaterials, their preparation, and performance testing
  • Explains the principles and challenges of the design and development of nano-scale devices
  • Explores applications through cases taken from a range of different sectors, including electronics, energy and medicine.

Introducing the fields of nanomaterials and devices, and their applications across a wide range of academic disciplines and industry sectors, Donglu Shi bridges knowledge acquisition and practical work, providing a starting point for the research and development of applications. The book describes characterization of nanomaterials, their preparation methods and performance testing techniques; the design and development of nano-scale devices; and the applications of nanomaterials, with examples taken from different industry sectors, such as lighting, energy, bioengineering and medicine / medical devices. Key nanomaterial types are covered, such as carbon nanotubes, nanobiomaterials, nano-magnetic materials, semiconductor materials and nanocomposites. Shi also provides detailed coverage of key emerging technologies such as DNA nanotechnology and spintronics. The resulting text is equally relevant for advanced students (senior and graduate) and for engineers and scientists from a variety of different academic backgrounds working in the multi-disciplinary field of nanotechnology. Provides detailed guidance for the characterization of nanomaterials, their preparation, and performance testing Explains the principles and challenges of the design and development of nano-scale devices Explores applications through cases taken from a range of different sectors, including electronics, energy and medicine.

Front Cover 1
Nanomaterials and Devices 4
Copyright Page 5
Contents 6
Preface 10
1 Basic Properties of Nanomaterials 12
1.1 The Nanometer and Its Brief History, Nanoscience, and Nanotechnology 13
1.2 Characteristics of Nanomaterials 16
1.2.1 Perfect Law of Nanomaterials 16
1.2.2 Nano-Effect 17
1.2.2.1 Exceptional Optical Properties 18
1.2.2.2 Exceptional Thermal Properties 19
1.2.2.3 Exceptional Magnetic Properties 20
1.2.2.4 Exceptional Mechanical Properties 21
1.2.2.5 Exceptional Electrical Properties 21
1.2.3 Natural Nano-Effect 22
1.3 Physical Principles of the Nano-Effect 23
1.3.1 Discontinuity of Electron Levels 24
1.3.2 Kubo Theory 25
1.3.2.1 Hypothesis Regarding Degenerate Fermi Liquid 26
1.3.2.2 Electrically Neutral Assumption of Ultrafine Particles 26
1.3.3 Quantum Size Effect 27
1.3.4 Small Size Effect 29
1.3.5 Surface Effect 31
1.3.6 Dielectric Confinement Effect 32
References 34
2 Characterization and Analysis of Nanomaterials 36
2.1 Detection and Analysis of Particle Size 37
2.2 Detection and Analysis of the Electrical Properties 39
2.3 Detection and Analysis of Magnetic Properties 41
2.4 Detection and Analysis of the Mechanical Properties 43
2.5 Detection and Analysis of Thermal Properties 44
2.6 Detection and Analysis of Optical Properties 48
2.7 Scanning Probe Microscopy 49
2.7.1 Working Principles of Scanning Tunneling Microscopy 50
2.7.2 Operating Mode of STM 50
2.7.3 STM Application: Atomic Manipulation 52
2.7.4 Advantages of STM 54
2.8 Atomic Force Microscopy 54
2.8.1 Working Principle of AFM 54
2.8.2 Comparison of the AFM Scanning Modes 55
2.8.3 Application Examples of AFM 55
References 57
3 Carbon Nanotubes 60
3.1 Allotropes of Carbon and Structure 61
3.1.1 Allotropes of Carbon 61
3.1.2 Structures of Carbon Allotropes 61
3.1.3 Graphene 63
3.1.3.1 Single-Layer Graphite Material (Graphene) 63
3.2 Types and Nature of CNTs 64
3.2.1 Types of CNTs 64
3.2.2 Characteristics of CNTs 65
3.2.2.1 Mechanical Properties 65
3.2.2.2 Electrical Characteristics 66
3.2.2.3 Thermal Properties 66
3.2.2.4 Superconducting Phenomenon of CNTs 67
3.2.2.5 Chemical Properties 67
3.2.3 Electronic Structure of CNTs 68
3.2.3.1 p-Electron Orbital and the Energy of the Conjugated Molecule in Planar Structure 68
3.2.3.2 Electronic Structure of Graphite 70
3.3 Preparation of CNTs 71
3.4 Applications of CNTs 73
3.4.1 CNT Electronics 73
3.4.1.1 The Limits of Microelectronics Technology and the Emergence of Nanoelectronics 73
3.4.1.2 Single-Electron Transistor 76
3.4.1.3 CNT Electronics 82
3.4.1.3.1 Quantum Wire 82
Conductivity of an SWNT 83
Conductivity of a Single MWNT 83
3.4.1.3.2 CNT-Based Junction 83
3.4.1.3.3 SET with CNTs 85
3.4.1.3.4 CNT-Based FET 86
3.4.1.3.5 Complementary Nongate (Inverter) Circuit with CNTs 87
3.4.2 Other Applications of CNTs 89
3.4.2.1 Nano Test Tubes 90
3.4.2.2 Nanobalance 90
3.4.2.3 Nanomolds 90
3.4.2.4 CNTs: Field Emission Cathode Materials 90
3.4.2.5 Application of CNTs in Hydrogen Storage 91
3.4.2.6 High-Energy Microbattery 92
3.4.2.7 High-Energy Capacitor 92
3.4.2.8 Chip Thermal/Heat Protection 92
3.4.2.9 Nanoreactor 92
3.4.2.10 Nanocomposite Materials 92
References 93
4 Semiconductor Quantum Dots 94
4.1 The Physical Basis of Semiconductor QDs 95
4.1.1 Quantum Confinement Effect 95
4.1.2 Excitons and Luminescence 98
4.1.2.1 The Concept of Excitons 98
4.1.2.2 Energy Band Structure of Excitons 99
4.1.3 Calculations of the Exciton Binding Energy 102
4.2 Preparation of Semiconductor QDs 104
4.3 Laser Devices Based on QDs 107
4.4 Single-Photon Source 111
References 115
5 Nanomagnetic Materials 116
5.1 Types of Nanomagnetic Materials 117
5.1.1 Artificial and Natural Nanomagnetic Materials 117
5.1.2 Classification of Magnetic Nanomaterials 119
5.2 Basic Characteristics of Nanomagnetic Materials 122
5.2.1 Magnetic Domain 123
5.2.2 Superparamagnetic Feature 125
5.2.3 Exchange Interaction 126
5.2.4 Coercivity Hc 128
5.2.5 Curie Temperature 128
5.2.6 Susceptibility 129
5.3 Some Specific Nanomagnetic Materials 130
5.3.1 Magnetic Fluids 130
5.3.2 Magnetic Microspheres 135
5.3.3 One-Dimensional Nanowires 135
5.3.4 Two-Dimensional Films 137
5.3.5 Magnetic Nanocomposite Materials 137
5.3.6 Double-Phase Nanocomposite Hard Magnets 140
5.3.7 High-Frequency Microwave Nanomagnetic Materials 140
5.4 Preparation of Nanomagnetic Materials 143
5.4.1 Classification 143
5.4.2 Specific Instances 144
5.4.2.1 Mechanical Crushing Method 144
5.4.2.2 Etching Method 146
5.4.2.3 Physical Method 146
5.4.2.4 Chemical Method 147
5.4.2.5 Preparation of Magnetic Nanoparticles in the Magnetic Fluid 149
5.4.2.6 Two-Dimensional Nanowire Array: Template Method 150
5.5 GMR Materials 153
5.5.1 GMR Effect and Applications 153
5.5.2 Classification and Comparison of Magnetic Resistance 155
5.5.3 Physical Mechanism of GMR 160
5.5.3.1 Magnetic Exchange Coupling 160
5.5.3.2 GMR Effects of Metal Superlattice 161
5.5.4 GMR Biosensors 163
5.5.4.1 Introduction of Biosensors 164
5.5.4.2 GMR Sensor Chip 165
5.5.4.3 GMR Biosensors 166
References 169
6 Nanotitanium Oxide as a Photocatalytic Material and its Application 172
6.1 Principle of TiO2 Photocatalysis 173
6.1.1 Development of Photocatalytic Technology 173
6.1.2 Principles of Semiconductor (TiO2) Photocatalysis 173
6.2 Preparation of TiO2 Materials 177
6.3 Application of TiO2 as Photocatalytic Material 180
References 184
7 Electro-Optical and Piezoelectric Applications of Zinc Oxide 186
7.1 Optoelectronic Applications 186
7.1.1 Optical Properties of Zinc Oxide 186
7.1.2 Epitaxial Growth of ZnO 190
7.1.2.1 MBE Technique with Microwave 190
7.1.2.2 L-MBE Growth Technique 190
7.1.3 Optical Properties of ZnO Quantum Dots 192
7.1.4 Controlled Synthesis of the Ordered ZnO Nanowire Arrays 194
7.1.4.1 VLS Growth 194
7.1.4.2 VS Growth 195
7.1.4.3 The Hydrothermal Method 195
7.2 Piezoelectric Applications of Zinc Oxide 196
7.2.1 Piezoelectric Effect 196
7.2.2 Piezoelectric Application of Zinc Oxide: Nanogenerators 198
7.2.2.1 Why Do We Need Nanogenerators? 198
7.2.2.2 Principle of Piezoelectric Nanogenerators 199
References 201
8 Superconducting Nanomaterials 202
8.1 Superconductivity 202
8.2 The Physical Principles of Superconductivity 204
8.3 The Classification of Superconductors 206
8.3.1 Low-Temperature Superconductors 206
8.3.2 High-Temperature Superconductors 206
8.3.3 Other Novel Superconductors 207
8.4 Nanosuperconductors 208
8.4.1 Research Progress 208
8.4.2 The Main Difficulties 212
8.4.2.1 Incredible Magnetic Nanoclusters 212
8.4.2.2 Quantum Fluctuations and Strong Correlation in Nanowires 213
8.4.2.3 Ultrathin Film 213
8.4.2.4 Proximity Effect 214
8.4.2.5 Nanosuperconductors and Hybrid Structures 214
8.4.2.6 Links Between Superconductors and Nanostructure 215
8.5 Application of Nanosuperconductors 215
8.5.1 Quantum Computers 216
8.5.2 Nanosuperconductor Quantum Bits 218
References 223
9 Nanobiological Materials 226
9.1 Nanobiological Materials 228
9.1.1 Overview 228
9.1.2 Drug and Gene Carrier Nanomaterials 229
9.1.2.1 Nanolilmsome 230
9.1.2.2 Solid Lipid Nanoparticles 231
9.1.2.3 Nanocapsules and Nanospheres 231
9.1.2.4 Polymer micelles 231
9.1.3 Bioceramic Nanomaterials 232
9.1.4 Magnetic Nanoparticles 233
9.1.5 Biocomposite Nanomaterials 234
9.2 Nanobiomedical Materials 235
9.2.1 Nanobioinorganic Materials 236
9.2.2 Nanoorganic Biological Material 237
9.2.2.1 Nanopolymeric Biological Materials 237
9.2.2.2 Nanobiocomposite Materials 238
9.2.3 Nanotechnology in Drugs 238
9.2.4 Biochips 239
9.2.5 Future Development of Nanobiomedical Materials 240
9.2.5.1 Nanorobots 240
9.2.5.2 Targeted Nanomedicine 241
9.2.5.3 Capabilities and Intelligence of Invasive Diagnosis 241
9.2.5.4 Drug Delivery Systems 241
9.2.5.5 Medical Composite Materials 242
9.3 Magnetic Particles in Medical Applications 242
9.4 Nanoparticles in Bioanalysis 245
9.5 QDs in Biological and Medical Analysis 249
9.5.1 QDs in Biological and Medical Analysis 250
9.5.2 QDs for In Vivo Studies 255
9.6 Research Progress of Nanomagnetic Materials in Hyperthermia 256
9.6.1 Background of Hyperthermia 256
9.6.2 Magnetic Hyperthermia 259
9.6.3 Magnetic Materials for Hyperthermia 261
9.6.4 Thermogenesis Mechanism of Magnetic Materials for Magnetic Hyperthermia 261
References 264
10 Nanoenergy Materials 266
10.1 Nanostorage Materials 269
10.1.1 Features and Objectives of Hydrogen Energy 270
10.1.2 Comparison of Different Hydrogen Storage Methods 270
10.1.3 Technology Status of Hydrogen Storage Materials 270
10.2 Fuel Cells 275
10.2.1 Basic Concept 275
10.2.2 Comparison of the Main Fuel Cells 278
10.2.3 Proton-Exchange Membrane 280
10.2.4 Nanofuel Cells 283
10.3 Dye-Sensitized Nanocrystalline Solar Cells 284
10.3.1 Status of Solar Cells 284
10.3.2 Types of Solar Cell 285
10.3.2.1 Inorganic Solar Cells 285
10.3.2.1.1 Silicon Wafer Solar Cells 286
10.3.2.1.2 Amorphous Silicon Solar Cells 287
10.3.2.1.3 Copper Indium Gallium Diselenide Solar Cells 288
10.3.2.1.4 Cadmium Telluride Thin-Film Solar Cells 289
10.3.2.1.5 Silicon Thin-Film Solar Cells 290
10.3.2.2 Organic Solar Cells 291
10.3.3 Dye-Sensitized Nanocrystalline Solar Cells 292
10.3.3.1 The History of Dye-Sensitized Nanocrystalline Solar Cells 292
10.3.3.2 Cell Structure 293
10.3.3.3 Working Principle 293
10.3.3.4 Parameters for Performance Evaluation 295
10.3.3.5 Research Progress 296
10.3.3.5.1 Sensitizer 296
10.3.3.5.2 Nanosemiconductor materials 297
10.3.3.5.3 Electrolyte 299
10.3.3.6 Main Problems 299
10.3.3.7 Flexible DSSC Cells 301
References 301
11 Nanocomposites 304
11.1 Concept and History 305
11.2 Surface Modification of Nanomaterials and Their Applications 306
11.2.1 Nanosurface Engineering 307
11.2.2 Mechanism of Surface Modification of Nanoparticles 308
11.2.2.1 Coating Modification 309
11.2.2.2 Coupling Modification 309
11.2.3 Surface Modifiers of Nanoparticles 310
11.2.3.1 Inorganic Compounds for the Surface Modification of Nanoparticles 310
11.2.3.2 Surface Modification with Nanoparticles 310
11.2.3.3 Surface Modification with Organic Compounds 311
11.2.3.4 Surface Modification with Polymers 312
11.2.4 Implementation of Nanoparticle Modification 312
11.2.5 Application of Modified Nanoparticles 314
11.2.5.1 Application in Plastics 314
11.2.5.2 Application in Composite Fire-Retardant Materials 314
11.2.5.3 Application in Composite Catalysts 314
11.2.5.4 Application in the Field of Lubrication 315
11.2.5.5 Applications in Composite Coating 315
11.2.5.6 Application in Rubber 315
11.3 Core–Shell Structure Composite Nanomaterials 316
11.3.1 Characteristics of Core–Shell Composite Structures 316
11.3.2 Composite Method 317
11.3.2.1 Polymerization Chemical Reaction 317
11.3.2.2 Biological Macromolecular Method 318
11.3.2.3 Surface Deposition and Surface Chemical Reaction Method 318
11.3.2.4 Controlled Deposition of Inorganic Colloidal Particles on the Core Particle Surface 319
11.3.2.5 Ultrasonic Chemical Method 320
11.3.2.6 Self-assembly 320
11.3.3 Mechanism of Formation of Core–Shell Structures 321
11.3.3.1 Mechanism of Chemical Bonding 321
11.3.3.2 Mechanism of Coulomb Electrostatic Force 321
11.3.3.3 Mechanism of Adsorption Layer Media 321
11.3.4 Changes in Material Properties 322
11.3.4.1 Changes in Optical Properties 322
11.3.4.2 Increase in the Stability of Particles 322
11.3.4.3 Catalyst Stability and Changes in Catalytic Activity 323
11.3.4.4 Changes in Magnetic 323
11.3.5 Applications of Core–Shell Composite Nanomaterials 324
References 326
12 DNA Nanotechnology 328
12.1 Basics of DNA 328
12.1.1 Unique Structure of DNA 328
12.1.2 DNA Conductivity 329
12.1.3 Simplest Equivalent Model of DNA Conduction 333
12.1.4 Advantages of DNA Molecular Devices 335
12.2 DNA Nanotechnology 336
12.2.1 DNA for the Assembly of Nanoparticles 336
12.2.2 Driving Force for Self-Assembly of DNA Templates 337
12.2.3 DNA as a Template to Prepare Molecular Wire 339
12.3 DNA Molecular Motors 340
12.3.1 Drexler Conjecture 340
12.3.2 Molecular Motors 342
12.3.3 Basic Principle of Molecular Motors 343
12.3.4 DNA Molecular Motors 346
12.3.4.1 DNA Applications in Molecular Devices 346
12.3.4.2 DNA Molecular Motors 346
References 348
Index 350

2

Characterization and Analysis of Nanomaterials


In order to elucidate nanoscale-driven properties, thorough characterization and analysis is required as materials with identical chemical composition can have vastly different properties depending on the size-scale of the material. As such, Chapter 2 is devoted to summarizing many aspects of nanoscale materials characterization and property analysis. Structural and chemical methods will be introduced, along with various microscopy methods. Methods for determining electrical, magnetic, mechanical, thermal, and optical properties will be summarized.

Keywords


Size analysis; structure analysis; nanoscale properties; electron microscopy; atomic force microscopy

Chapter Outline

Complete characterization and analysis of nanomaterials include particle composition, particle size distributions, morphology/shape, structural analysis, surface characterization, surface area analysis, optical properties, magnetic properties, and others [1].

Conventional characterization methods for nanomaterials can vary from system to system but commonly include transmission electron microscopy (TEM), X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray absorption fine structure (XAFS), inductively coupled plasma mass spectroscopy (ICP-MS), vibrating sample magnetometer (VSM), Auger electron spectroscopy (AES), Mossbauer spectroscopy, and differential scanning calorimetry (DSC), to name a few. For nanoparticles with a size less than 10 nm, different techniques are required, such as high-resolution electron microscopy (HRTEM), Raman spectroscopy, nuclear magnetic resonance (NMR), ultraviolet photoemission spectroscopy (UPS), scanning tunneling electron microscopy (STEM), secondary ion mass spectroscopy, second neutral-atom mass spectroscopy (SNMS), and field-emission scanning transmission electron microscopy (FE-STEM). Table 2.1 highlights characterization techniques used for nanomaterials with the type of information obtained and the resolution of the instruments (TFXRD indicates thin-film XRD and TC indicates texture cradle).

Table 2.1

Comparison of the Performance of Different Testing and Analytical Instruments for Nanomaterials

Surface analysis AES Surface composition, chemical bonding 1 μm
AFM Surface structure 5 nm
XPS Surface composition, chemical bonding 5 nm
SIMS Surface composition, in-depth analysis 50 μm
Electron microscopy SEM (×2) Surface microstructure, composition analysis, material analysis 0.1 μm
TEM/STEM Internal microstructure, crystal structure, composition analysis 0.4/20 nm
HREM Crystal (atomic/molecular) structure, interface structure 0.18 nm
XRD XRD Crystal structure, phase identification  
TFXRD Phase identification of films, film thickness  
TC Hole image  

2.1 Detection and Analysis of Particle Size


First, we need to find a way to define the size of nanomaterials. For spherical nanoparticles, the diameter is defined as the size of the nanoparticle. As for nanomaterials of asymmetric shapes, the following four definitions are usually used: geometric diameter, equivalent diameter, SSA (specific surface area) diameter, and refraction diameter.

Geometric diameter: For particles of any geometric shape, the largest projected area can be converted into a circle of the same size. The diameter of this circle is the geometric diameter of particles.

Equivalent diameter: The size of powder particles can be measured by using the sedimentation method, centrifugal method, mechanical method, or hydraulic method. Homogeneous spherical particles, for example, have the same terminal settling velocity as nanoparticles; their diameter shall have an equivalent diameter of the nanoparticles.

SSA diameter: Using a variety of possible techniques, the SSA of the nanoparticle can be determined. From the surface area, a diameter can be calculated by one of the even spherical particles with the same formula:

s=6[ρρm]VS


Here, ds is the SSA particle size, is the sample density, V is volume of material tested, m is the density of the bulk materials, and S is the calculated surface area of the particles.

Refraction diameter: The diameter of the nanoparticle as determined using XRD techniques.
Typically, the calculated diameter will vary depending on the method used, as shown in Table 2.2.
SSA diameter can be measured by using chemical and physical adsorption methods. Physical adsorption and chemical adsorption are compared in Table 2.3.

Table 2.2

Determination of Particle Size

Geometric diameter Optical microscopy 500–0.2 Number distribution
Electron microscopy 10–0.01 Number distribution
Equivalent diameter Gravity sedimentation 50–1 Mass distribution
Centrifugal sedimentation 10–0.01 Mass distribution
Gas precipitation 50–1 Mass distribution
Proliferation 0.5–0.001 Mass distribution
SSA size Adsorption (gas) 20–0.001 Average SSA size
Infiltration (gas) 50–0.2 Average SSA size
Wetting heat 12–0.001 Average SSA size
Refraction diameter Refraction 12–0.001 Volume distribution
X-ray line width 0.05–0.0001 Volume distribution
X-ray scattering at small-angle 0.1–0.001 Volume distribution

Table 2.3

Comparison of Physical Adsorption and Chemical Adsorption

Adsorbability van der Waals force Atomic bonding force
Heat of adsorption 10 kcal/more 10–100 kcal/more
Optionality None (applicable to any system at low temperatures) Selectivity
Absorption rate Quickly (unable to be determined) Usually not too fast (able to be determined)
Adsorption layer Adsorption on multi-molecular layer Adsorption on single-molecule layer
Fixed temperature adsorption Decreased at high temperatures (decreasing with temperature increase) Increased at high temperature (increasing with temperature increase)
Reversibility Easy to fall off Not easy to fall off

The BET (Brunauer, Emmett, and Teller) method using multilayer gas adsorption is commonly used for the measurement of SSA materials in the solid phase. It is generally performed using two methods: the volumetric and the gravimetric methods. The volumetric method uses differences in sample volume of a known quantity of gas before and after...

Erscheint lt. Verlag 26.9.2014
Sprache englisch
Themenwelt Technik Bauwesen
Technik Elektrotechnik / Energietechnik
ISBN-10 1-4557-7749-8 / 1455777498
ISBN-13 978-1-4557-7749-5 / 9781455777495
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 15,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 5,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen der Berechnung und baulichen Ausbildung von Stahlbauten

von Jörg Laumann; Markus Feldmann; Jörg Frickel …

eBook Download (2022)
Springer Vieweg (Verlag)
119,99