Emerging Nanotechnologies for Manufacturing -  Waqar Ahmed,  Mark J Jackson

Emerging Nanotechnologies for Manufacturing (eBook)

eBook Download: PDF | EPUB
2014 | 2. Auflage
576 Seiten
Elsevier Science (Verlag)
978-0-323-29643-4 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
175,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

In the second edition of Emerging Nanotechnologies for Manufacturing, an unrivalled team of international experts explores existing and emerging nanotechnologies as they transform large-scale manufacturing contexts in key sectors such as medicine, advanced materials, energy, and electronics. From their different perspectives, the contributors explore technologies and techniques as well as applications and how they transform those sectors.

With updated chapters and expanded coverage, the new edition of Emerging Nanotechnologies for Manufacturing reflects the latest developments in nanotechnologies for manufacturing and covers additional nanotechnologies applied in the medical fields, such as drug delivery systems. New chapters on graphene and smart precursors for novel nanomaterials are also added.

This important and in-depth guide will benefit a broad readership, from R&D scientists and engineers to venture capitalists.


  • Covers nanotechnology for manufacturing techniques and applications across a variety of industries
  • Explores the latest developments such as nanosuspensions and nanocarriers in drug delivery systems, graphene applications, and usage of smart precursors to develop nanomaterials
  • Proven reference guide written by leading experts in the field

In the second edition of Emerging Nanotechnologies for Manufacturing, an unrivalled team of international experts explores existing and emerging nanotechnologies as they transform large-scale manufacturing contexts in key sectors such as medicine, advanced materials, energy, and electronics. From their different perspectives, the contributors explore technologies and techniques as well as applications and how they transform those sectors. With updated chapters and expanded coverage, the new edition of Emerging Nanotechnologies for Manufacturing reflects the latest developments in nanotechnologies for manufacturing and covers additional nanotechnologies applied in the medical fields, such as drug delivery systems. New chapters on graphene and smart precursors for novel nanomaterials are also added. This important and in-depth guide will benefit a broad readership, from R&D scientists and engineers to venture capitalists. Covers nanotechnology for manufacturing techniques and applications across a variety of industries Explores the latest developments such as nanosuspensions and nanocarriers in drug delivery systems, graphene applications, and usage of smart precursors to develop nanomaterials Proven reference guide written by leading experts in the field

Front Cover 1
Emerging Nanotechnologies for Manufacturing 4
Copyright Page 5
Contents 6
Preface 16
List of Contributors 18
1 Nanotechnology to Nanomanufacturing 22
1.1 Introduction 22
1.2 Approaches to Nanotechnology 23
1.3 Transition from Nanotechnology to Nanomanufacturing 24
1.3.1 Top-down approach 25
1.3.2 Bottom-up approach 26
1.4 Conclusions 31
References 34
2 Gas phase nanofication: a strategy to impart fast response in sensors 35
2.1 Introduction 36
2.2 Proposed Rationale 37
2.3 Methods of Establishing the Desired Redox po2 38
2.4 Sample Preparation 41
2.4.1 Materials and processing 41
2.4.2 Characterization 43
2.4.3 High temperature reductive etching process 43
2.4.4 Gas sensing experiments 44
2.5 Results and Discussion 44
2.5.1 Mo- and MoO3-based studies 44
2.5.2 W- and WO3-based studies 51
2.5.3 TiO2-based studies 62
2.6 Conclusions 71
References 72
3 
74 
3.1 Measurement of the Topology of Nanostructures 75
3.1.1 Field emission scanning electron microscope 75
3.1.2 Scanning probe microscopy 76
3.1.3 Optical microscopes 82
3.2 MEasurement of Internal Geometries of Nanostructures 87
3.2.1 Transmission electron microscope 87
3.2.2 Focused ion beam 88
3.2.3 X-ray diffraction 90
3.2.4 Mercury porosimetry 91
3.3 Measurement of Composition of Nanostructures 94
3.3.1 Energy dispersive X-ray spectroscopy 94
3.3.2 X-ray photoelectron spectroscopy 96
3.3.3 Secondary ion mass spectroscopy 98
3.3.4 Auger electron spectroscopy 99
3.4 Conclusion 101
References 102
4 
107 
4.1 Introduction 107
4.2 Template-assisted nanostructuring 109
4.3 Electric field induced nanostructuring 122
4.4 Laser-induced nanostructuring 128
4.5 Vapour–Liquid–Solid technique 134
4.6 Summary and Outlook 139
Acknowledgements 140
References 140
5 Engineered carbon nanotube field emission devices 146
5.1 Introduction 147
5.1.1 Synthesis 149
5.1.2 Positional Control 160
5.1.3 Alignment Control 163
5.2 Field Emission 165
5.2.1 Electron Microscopy 176
5.2.2 Parallel Electron Beam Lithography 178
5.2.3 X-ray Sources 180
5.2.4 Microwave Sources 183
5.2.5 Displays 184
5.2.6 Gas Ionization Sensors and Gauges 187
5.2.7 Interstellar Propulsion 190
5.3 Conclusion 190
Acknowledgments 191
References 191
6 Upconverting fluorescent nanoparticles for biological applications 208
6.1 Introduction 208
6.2 The Mechanism of Fluorescent UC 210
6.3 Upconverting Nanoparticles 210
6.4 Conjugation of Biomolecules to UCN 211
6.5 UCN for Biological Applications 214
6.5.1 UCN in immunoassays 214
6.5.2 UCN in bioimaging 215
6.5.3 UCN for photodynamic therapy 216
6.6 Conclusion 218
References 218
7 Micro- and nanomachining 223
7.1 Introduction 224
7.2 Machining Effects at the Microscale 224
7.2.1 Shear Angle Prediction 227
7.2.2 Plastic Behavior at Large Strains 231
7.2.3 Langford and Cohen’s Model 231
7.2.4 Walker and Shaw’s Model 232
7.2.5 Usui’s Model 233
7.2.6 Sawtooth Chip Formation in Hard Turning 233
7.2.7 Fluid-Like Flow in Chip Formation 234
7.3 Size Effects in Micromachining 235
7.4 Nanomachining 235
7.4.1 Nanometric Machining 236
7.4.2 Theoretical Basis of Nanomachining 237
7.4.3 Comparison of Nanometric Machining and Conventional Machining 248
Acknowledgments 248
References 248
8 Design of experiments: a key to innovation in nanotechnology 251
8.1 Introduction to DoE 252
8.2 OFAT: The Predominant Method Used in Practice 253
8.3 Traditional Methods Used in Research and Development 255
8.3.1 Completely randomized design 256
8.3.2 Two-level factorial design 257
8.3.3 RSM 258
8.3.4 Taguchi’s method 259
8.3.5 Opportunities for improvement in experimentation 260
8.4 Modern DoE Methods Appropriate for Nanotechnology and Nanomanufacturing 261
8.4.1 Split plot design and its variants 261
8.4.2 MSSP design 263
8.4.3 Repeated measures 264
8.4.4 Saturated and supersaturated design 264
8.4.5 Mixture design 265
8.4.6 Computer deterministic experiments 265
8.4.7 Computer-generated design: Alphabetical optimal design 266
8.5 Summary of Nanotechnology Articles that Use Statistical Experimentation 266
8.6 Final Remarks 271
References 271
9 Environmental and occupational health issues with nanoparticles 276
9.1 Introduction 276
9.2 Potential Health Effects 277
9.3 Current State of the Literature 278
9.4 Characterization of Airborne Nanoparticles 284
9.5 Conclusions 289
References 289
10 Commercialization of nanotechnologies: technology transfer from university research laboratories 291
10.1 Introduction 292
10.1.1 Venture Capitalists 292
10.1.2 Start-Up Companies in Nanotechnology 293
10.2 Role of Government in Commercialization 293
10.3 Role of Academic Research in Commercializing Nanotechnology Products 294
10.4 Technology Transfer for Nanotechnology Products 296
10.5 IP—Impact and Ownership 297
10.5.1 Patents 297
10.5.2 Trade Secrets 297
10.5.3 Copyright 297
10.6 Role of the Entrepreneur, Major Corporations, and National Laboratories in Commercialization 298
10.7 Concluding Remarks 298
Acknowledgments 299
References 299
Internet Resources 299
11 Fabrication of hydrogel micropatterns by soft photolithography 300
11.1 Introduction 300
11.2 Microfabrication 301
11.2.1 Microfabrication techniques 302
11.3 Lithography 303
11.4 Hydrogel as a biomaterial 303
11.5 Soft photolithography of hydrogel micropatterns 304
11.5.1 Fabrication of PDMS stamp 304
11.5.2 Surface functionalization of silicon substrates by silanization 307
11.5.3 Soft photolithography 308
11.6 Conclusion 311
References 312
12 Nanocrystalline diamond for RF-MEMS applications 315
12.1 Introduction 315
12.2 Diamond crystal structure and properties 316
12.3 Chemical vapour deposition of diamond films 317
12.4 Growth mechanism of NCD films 319
12.5 Techniques for the characterization of NCD films 320
12.6 Mechanical resonators 325
12.7 Electrostatic and thermal switches 326
12.8 DESIGN of the thermally actuated NCD actuator 327
12.9 Fabrication and integration 328
12.10 Measurement and analysis 331
Acknowledgements 336
References 337
13 Analysis of the effects of micromachining using nanostructured cutting tools 340
13.1 Introduction 340
13.2 Computational Analyses 341
13.2.1 Computational Analysis of Temperature in Micromachining 341
13.2.2 Finite Element Analysis 350
13.3 Computational Results 351
13.3.1 Uncoated Microtools 351
13.3.2 Coated Cutting Tools 352
13.4 Discussion 358
13.5 Conclusions 362
Acknowledgments 362
References 362
14 Metal oxide nanopowder 364
14.1 Introduction 365
14.2 Use of nanopowders since the year 2000 369
14.3 The chemistry of metal oxide nanopowder 373
14.3.1 Important behaviour of metal oxide nanopowder 375
14.3.2 Criteria for the synthesis of metal oxide 375
14.3.3 Requirements for the synthesis of nanoparticles 378
14.3.4 Controlling factors for the growth of nanopowder 378
14.4 Different methods used for the synthesis of metal oxide nanopowder 380
14.4.1 High temperature synthesis 380
14.4.2 Low temperature synthesis 381
14.4.3 Replication method 381
14.4.4 Mechanical attrition 381
14.4.5 Hydrothermal synthesis 381
14.4.6 Inverse micelle method 382
14.4.7 Sol–gel process 383
14.4.8 General mechanism for sol–gel process 385
14.4.9 Acid-catalysed mechanism 385
14.4.10 Pechini method 388
14.5 Characterization of metal oxide nanopowder 391
14.5.1 Infrared spectroscopy 391
14.5.2 Ultraviolet spectroscopy 392
14.5.3 Thermal analysis 392
14.5.4 Raman spectroscopy 392
14.5.5 Atomic force microscopy 393
14.5.6 X-ray diffraction studies 394
14.5.7 Wide angle X-ray scattering 394
14.5.8 Small angle X-ray scattering 394
14.5.9 Electron microscopy 395
14.5.10 Transmission electron microscopy 395
14.5.11 Scanning electron microscopy 395
14.5.12 Characterization of porosity 396
14.6 Application based on phase transfer 397
14.6.1 The synthesis of monometal-based nanopowder 397
14.6.2 Use of titania film in car 405
14.7 Synthesis of bimetallic alkoxide for the preparation of bimetallic oxide nanopowder 405
14.7.1 Physico-chemical properties of bimetallic alkoxides [94–96] 406
14.7.2 Preparation of bimetallic oxide nanopowder via sol–gel process 409
14.7.3 Some SEM data of bimetallic oxide 410
14.8 APPlications of metal oxide for photoluminescence 413
14.9 Conclusions 418
14.10 Future prospects 418
Acknowledgement 419
Dedication 419
References 419
15 Some approaches to large-scale manufacturing of liposomes 423
15.1 Introduction 424
15.2 Structure and Self-Assembly of Phospholipids 425
15.3 Biological Functionality of Liposomes 426
15.3.1 Conventional Liposomes 426
15.3.2 Cationic Liposomes 426
15.3.3 Thermosensitive (Temperature-Sensitive) Liposomes 426
15.3.4 pH-Sensitive Liposomes 427
15.3.5 Long-Circulating (Sterically Stabilized) Liposomes 427
15.3.6 Ultradeformable Liposomes (Transferosomes) 427
15.4 Methods of Liposome Preparation 428
15.4.1 Thin Film Hydration Method 428
15.4.2 Reverse Phase Evaporation Vesicles 428
15.4.3 Freeze-Drying Method 429
15.4.4 Proliposome Methods 429
15.5 Large-Scale Manufacture of Particulate-Based Proliposomes 432
15.5.1 Proliposomes Manufactured Using Fluidized-Bed Coating 433
15.5.2 Proliposomes Produced Using Air-Jet (Fluid Energy) Milling 433
15.5.3 Proliposomes Produced Using Spray Drying 434
15.6 Large-Scale Manufacture of Ethanol-Based Proliposomes 434
15.7 Conclusions 434
References 434
16 Nanocoatings in medicine: antiquity and modern times 439
16.1 Introduction 439
16.2 What Is a Nanocoating? 440
16.3 Common Nanocoating Methods 442
16.4 Nonmedical Applications of Nanocoating Technologies 445
16.4.1 Nanoprotection 445
16.4.2 Mechanical Properties 446
16.4.3 New Functionality 447
16.5 Nanocoating of Medical Devices 449
16.5.1 Dentistry 449
16.5.2 Implants 450
16.5.3 Stents 452
16.5.4 Cells 453
16.5.5 Miscellaneous 454
16.6 Nanocoating of Pharmaceutical Dosage Forms 456
16.7 Conclusions 460
References 460
17 Smart precursors for smart nanoparticles 465
17.1 Introduction 468
17.2 Type of Nanoparticles 473
17.2.1 Novel Properties of Materials at the Nanoscale 473
17.3 Structure of Nanoparticles [16–19] 474
17.4 Conductive Properties [3,20,21] 475
17.5 Metal Oxide 477
17.6 Shape of the Particles 480
17.6.1 Particle Size and its Distributions 480
17.7 Surface Charge Density and Their Colloidal Stability 480
17.7.1 Interfacial Polarity 481
17.7.2 Cross-Linking 481
17.7.3 Functionality 481
17.8 Chemistry of Metal Alkoxides Used as Single-Source Molecular Precursors for the Synthesis of Nanomaterials [25–78] 481
17.8.1 Geometrical Concept in the Design of Molecular Structure [26–29] 482
17.8.2 Schematic Representation of the Major Experimental Steps Involved in the Synthesis of Mixed Metal Oxide Nanopowder 485
17.8.3 Reactivity of Metal Substitution Reactions 486
17.9 Molecular Structure Plays the Decisive Role 486
17.9.1 Synthesis of Nanomaterials [41–61] 489
17.9.2 Capping Agents 493
17.9.3 Liquid-Phase Synthesis 493
17.9.4 Advantages of Vapor-Phase Synthesis 501
17.9.5 Methods Used for Liquid or Vapor Precursor Process 503
17.9.6 Processing for the Synthesis of Nanostructure Materials in the Nanoparticle 503
17.9.7 Vacuum Thermal Evaporation Technique for Deposition [76,244–247] 503
17.10 Experimental Techniques 505
17.10.1 FTIR Spectra 506
17.10.2 Difference in Energy States = Energy of Light Absorbed 507
17.10.3 Calcination at 450°C for 4 h in dry air 507
17.10.4 Ultraviolet and Visible Spectroscopy 508
17.10.5 Thermal Gravimetric Analysis and Differential Thermal Analysis 514
17.10.6 Specific Surface Area 515
17.10.7 Scanning Electron Microscopy 519
17.10.8 Probe Microscopy 521
17.11 Diffraction Techniques 521
17.11.1 Neutron Diffraction 522
17.12 Miscellaneous Techniques [282,283] 525
17.12.1 Confocal Laser Scanning Microscopy 525
17.12.2 Extended X-Ray Absorption Fine Structure (EXAFS) 525
17.12.3 X-Ray Fluorescence Spectroscopy 526
17.12.4 Mass Spectroscopy 526
17.12.5 Photoelectron Spectroscopy 526
17.12.6 X-Ray Photoelectron Spectroscopy 526
17.12.7 Brunauer, Emmett and Teller (BET) 527
17.13 Applications of Nanomaterials 527
17.14 Uses of Nanomaterials for Various Applications 528
17.14.1 Thin Coatings [293–297] 529
17.15 Conclusion 542
Dedication 542
References 542
Index 560

Erscheint lt. Verlag 15.9.2014
Sprache englisch
Themenwelt Technik Bauwesen
Technik Maschinenbau
ISBN-10 0-323-29643-2 / 0323296432
ISBN-13 978-0-323-29643-4 / 9780323296434
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 81,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 15,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen der Berechnung und baulichen Ausbildung von Stahlbauten

von Jörg Laumann; Markus Feldmann; Jörg Frickel …

eBook Download (2022)
Springer Fachmedien Wiesbaden (Verlag)
119,99