Gasification for Synthetic Fuel Production -

Gasification for Synthetic Fuel Production (eBook)

Fundamentals, Processes and Applications

R Luque, J Speight (Herausgeber)

eBook Download: PDF | EPUB
2014 | 1. Auflage
348 Seiten
Elsevier Science (Verlag)
978-0-85709-808-5 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
175,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Gasification involves the conversion of carbon sources without combustion to syngas, which can be used as a fuel itself or further processed to synthetic fuels. The technology provides a potentially more efficient means of energy generation than direct combustion. This book provides an overview of gasification science and engineering and the production of synthetic fuels by gasification from a variety of feedstocks. Part one introduces gasification, reviewing the scientific basis of the process and gasification engineering. Part two then addresses gasification and synthentic fuel production processes. Finally, chapters in part three outline the different applications of gasification, with chapters on the conversion of different types of feedstock.
  • Examines the design of gasifiers, the preparation of feedstocks, and the economic, environmental and policy issues related to gasification
  • Reviews gasification processes for liquid fuel production
  • Outlines the different applications of gasification technology

Gasification involves the conversion of carbon sources without combustion to syngas, which can be used as a fuel itself or further processed to synthetic fuels. The technology provides a potentially more efficient means of energy generation than direct combustion. This book provides an overview of gasification science and engineering and the production of synthetic fuels by gasification from a variety of feedstocks. Part one introduces gasification, reviewing the scientific basis of the process and gasification engineering. Part two then addresses gasification and synthentic fuel production processes. Finally, chapters in part three outline the different applications of gasification, with chapters on the conversion of different types of feedstock. Examines the design of gasifiers, the preparation of feedstocks, and the economic, environmental and policy issues related to gasification Reviews gasification processes for liquid fuel production Outlines the different applications of gasification technology

Front Cover 1
Gasification for Synthetic: Fuel Production Fundamentals, Processes, and Applications 4
Copyright 5
Contents 6
List of contributors 10
Woodhead Publishing Series in Energy 12
Part One: Fundamentals 16
Chapter 1: Gasification and synthetic liquid fuel production 18
1.1. Introduction 18
1.2. Gasification processes 19
1.3. Gasification feedstocks 20
1.3.1. Coal 20
1.3.2. Biomass 22
1.3.3. Petroleum residues 24
1.3.4. Black liquor 26
1.4. Gasification for power generation 27
1.4.1. General aspects 27
1.4.2. Cogasification of coal with biomass and waste 28
1.4.2.1. Biomass 29
1.4.2.2. Waste 31
1.5. Gasification for synthetic fuel production 33
1.5.1. Gaseous products 34
1.5.1.1. Synthesis gas 34
1.5.1.2. Low-heat content (low-Btu) gas 35
1.5.1.3. Medium-heat content (medium-Btu) gas 35
1.5.1.4. High-heat content (high-Btu) gas 36
1.5.2. Liquid fuels 37
1.6. Future trends 38
Chapter 2: Types of gasifier for synthetic liquid fuel production 44
2.1. Introduction 44
2.2. Gasifier types 45
2.2.1. Fixed-bed gasifiers 46
2.2.2. Fluid-bed gasifiers 48
2.2.3. Entrained-bed gasifier 51
2.2.4. Molten salt gasifier 52
2.3. Products of gasification 53
2.3.1. Gases 54
2.3.2. Other gaseous products 56
2.3.3. Tar 56
2.4. Reactor design: chemical aspects 57
2.4.1. Feedstock devolatilization 57
2.4.2. Char gasification 58
2.4.3. Chemistry 59
2.5. Reactor design: physical aspects 60
2.5.1. Influence of feedstock quality 60
2.5.2. Mixed feedstocks 61
2.5.3. Mineral matter content and ash production 62
2.5.4. Heat release 62
2.5.5. Other design options 63
2.6. Gasification mechanism 63
2.6.1. Primary gasification 64
2.6.2. Secondary gasification 65
2.6.3. Shift conversion 65
2.6.4. Hydrogasification 65
2.6.5. Catalytic gasification 66
2.6.6. Plasma gasification 67
Chapter 3: Preparation of feedstocks for gasification for synthetic liquid fuel production 72
3.1. Introduction 72
3.2. Feedstock types, properties, and characterization 73
3.3. Feedstock suitability and utilization challenges 75
3.4. Preparation techniques for onward processing 79
3.4.1. Crushing, separation, and drying 79
3.4.2. Compaction, pelletizing, and briquetting 80
3.5. Advantages and limitations of feedstocks for gasification 82
Chapter 4: Sustainability assessment of gasification processes for synthetic liquid fuel production 88
4.1. Introduction 88
4.2. Environmental and energy issues 89
4.2.1. LCA of biofuels 89
4.2.2. Impacts on energy 92
4.3. Economic assessment of synthetic liquid and gaseous biofuels 95
4.3.1. Biodiesel 95
4.3.1.1. Feedstock options and land use 95
4.3.1.2. Feedstock, capital, and other costs 97
4.3.2. Bioethanol 98
4.3.2.1. Feedstock options and land use 98
4.3.2.2. Feedstock, capital, and other costs 100
4.3.3. Algae fuels 101
4.3.4. Biogas fuels 103
4.3.4.1. The role of gasification 103
4.3.4.2. Economic assessment of syngas 103
4.3.4.3. Economic assessment of SNG 104
4.4. The role of sustainability assessment in supporting international biofuel policies 106
4.5. Conclusions 109
4.6. Future trends 110
Part Two: Gasification processes for synthetic liquid fuel production 116
Chapter 5: Gasification reaction kinetics for synthetic liquid fuel production 118
5.1. Introduction 118
5.2. General chemistry of gasification 119
5.2.1. Devolatilization 121
5.2.2. Char gasification 121
5.2.3. Products 123
5.3. Process chemistry 124
5.3.1. General aspects 124
5.3.2. Pretreatment 125
5.3.3. Primary gasification 125
5.3.4. Secondary gasification 126
5.3.5. Carbon dioxide gasification 127
5.3.6. Water gas shift reaction 127
5.3.7. Methanation 129
5.3.8. Hydrogasification 129
5.4. Conclusions 130
Chapter 6: Gasification processes for syngas and hydrogen production 134
6.1. Introduction 134
6.2. Synthesis gas production 135
6.2.1. Steam-methane reforming 136
6.2.2. Autothermal reforming 141
6.2.3. Combined reforming 142
6.2.4. Partial oxidation 142
6.2.5. Membrane reactors 144
6.3. Hydrogen production 145
6.3.1. Heavy residue gasification and combined cycle power generation 145
6.3.2. Hybrid gasification process 146
6.3.3. Hydrocarbon gasification 146
6.3.4. Hypro process 146
6.3.5. Pyrolysis processes 147
6.3.6. Shell gasification process 148
6.3.7. Steam-naphtha reforming 148
6.3.8. Texaco gasification (partial oxidation) process 149
6.3.9. Recovery from fuel gas 150
6.4. Gasification products: composition and quality 150
6.4.1. Purification 151
6.4.2. Oil-water separation 155
6.5. Advantages and limitations 155
Chapter 7: Synthetic liquid fuel production from gasification 162
7.1. Introduction 162
7.2. Fischer-Tropsch synthesis 164
7.2.1. Fischer-Tropsch liquids 164
7.2.2. Upgrading Fischer-Tropsch liquids 166
7.2.2.1. Gasoline production 168
7.2.2.2. Diesel production 170
7.3. Sabatier-Senderens process 170
7.3.1. Methanol production 171
7.3.2. Dimethyl ether production 172
7.4. Thermal, catalytic, and hydrocracking processes 174
7.4.1. Tar sand bitumen 175
7.4.1.1. Conversion to liquids 175
7.4.1.2. Upgrading tar sand liquids 175
7.4.2. Coal 176
7.4.2.1. Conversion to liquids 176
7.4.2.2. Upgrading coal liquids 178
7.4.3. Oil shale 179
7.4.3.1. Conversion to liquids 179
7.4.3.2. Upgrading refining shale oil 180
7.4.4. Biomass 182
7.4.4.1. Conversion to liquids 182
7.4.4.2. Upgrading bio-oil 183
7.5. Product quality 184
7.6. Conclusions 185
Chapter 8: Assessing fuels for gasification 190
8.1. Introduction 190
8.2. Sampling 192
8.3. Proximate analysis 192
8.3.1. Moisture content 193
8.3.2. Volatile matter 193
8.3.3. Ash 194
8.3.4. Fixed carbon 195
8.4. Calorific value 195
8.5. Ultimate analysis 197
8.6. Physical properties 198
8.6.1. Density 199
8.6.2. Porosity and surface area 199
8.7. Mechanical properties 200
8.7.1. Strength 200
8.7.2. Hardness 201
8.7.3. Friability 201
8.7.4. Grindability 202
8.8. Thermal properties 202
8.8.1. Heat capacity 203
8.8.2. Thermal conductivity 203
8.8.3. Plastic and agglutinating properties 204
8.8.4. Agglomerating index 204
8.8.5. Free-swelling index 205
8.8.6. Ash fusion temperature 205
8.9. Real-time analysis for quality control 206
8.9.1. Method evolution 206
8.10. Advantages and limitations 207
Part Three: Applications 214
Chapter 9: Coal gasification processes for synthetic liquid fuel production 216
9.1. Introduction 216
9.2. Coal types and properties 216
9.3. Gas products 218
9.3.1. Coal devolatilization 218
9.3.2. Char gasification 219
9.3.3. Gasification chemistry 219
9.3.4. Other process options 220
9.3.4.1. Hydrogasification 220
9.3.4.2. Catalytic gasification 221
9.3.4.3. Plasma gasification 221
9.3.5. Process optimization 222
9.4. Products and product quality 223
9.4.1. Low Btu gas 223
9.4.2. Medium Btu gas 224
9.4.3. High Btu gas 225
9.4.4. Methane 225
9.4.5. Hydrogen 226
9.4.6. Other products 227
9.5. Production of chemicals 227
9.5.1. Coal tar chemicals 227
9.5.2. Fischer-Tropsch chemicals 230
9.5.2.1. Fischer-Tropsch process 230
9.5.2.2. Fischer-Tropsch catalysts 231
9.5.2.3. Product distribution 231
9.6. Advantages and limitations 232
Chapter 10: Heavy hydrocarbon gasification for synthetic fuel production 236
10.1. Introduction 236
10.2. Heavy feedstocks 237
10.2.1. Petroleum residua 238
10.2.2. Heavy oil 239
10.2.3. Extra heavy oil 240
10.2.4. Tar sand bitumen 240
10.2.5. Other feedstocks 241
10.2.5.1. Petroleum coke 241
10.2.5.2. Solvent deasphalter bottoms 242
10.3. Synthesis gas production 243
10.3.1. POX technology 244
10.3.1.1. Shell gasification process 245
10.3.1.2. Texaco process 245
10.3.1.3. Phillips process 246
10.3.2. Catalytic partial oxidation 247
10.3.3. Steam reforming 247
10.3.4. Autothermal reforming 248
10.3.5. Combined reforming 248
10.4. Output products 248
10.4.1. Gas purification and quality 249
10.4.2. Process optimization 250
10.5. Conclusion and future trends 250
10.5.1. Other uses of residua 250
10.5.2. Gasification in the future refinery 251
Chapter 11: Biomass gasification for synthetic liquid fuel production 256
11.1. Introduction 256
11.2. Properties of biomass resources 258
11.2.1. Background 258
11.2.2. Origins of biomass resources 258
11.2.3. Properties of biomass materials 258
11.3. Biomass gasification 260
11.4. Biomass gasification properties 263
11.4.1. Influence of feedstock characteristics 263
11.4.1.1. Biomass type 263
11.4.1.2. Particle size 265
11.4.1.3. Moisture content 265
11.4.2. Gasification parameters 266
11.4.2.1. Gasification temperature 267
11.4.2.2. Gasifying agent 268
11.4.2.3. Gasification pressure 269
11.5. The biomass gasifier 270
11.6. The formation and cracking of tar 272
11.6.1. Formation mechanism of tar 272
11.6.2. Tar cracking 273
11.6.2.1. Dolomite 273
11.6.2.2. Alkali metal and alkaline-earth metals catalysis 274
11.6.2.3. Nickel-based catalysts 275
11.7. Char gasification 275
11.8. Novel technology for biomass gasification 277
11.8.1. Staged gasification 277
11.8.2. Sorption-enhanced steam gasification of biomass for H2 production 280
11.9. Mathematical simulation of biomass gasification 282
11.9.1. Thermodynamic equilibrium models 282
11.9.2. Kinetics models 283
11.9.3. Neural networks model 284
11.10. Conclusion and future trends 284
Chapter 12: Waste gasification for synthetic liquid fuel production 292
12.1. Introduction 292
12.2. Waste types 293
12.2.1. Solid waste 294
12.2.2. Municipal solid waste 294
12.2.3. Industrial solid waste 295
12.2.4. Biosolids 297
12.2.5. Biomedical waste 297
12.3. Feedstock properties and plant safety 297
12.3.1. Feedstock properties 298
12.3.2. Plant safety 298
12.4. Fuel production 298
12.4.1. Preprocessing 299
12.4.2. Gasifier types 301
12.4.2.1. Counter-current fixed bed gasifier 301
12.4.2.2. Cocurrent fixed bed gasifier 302
12.4.2.3. Fluidized-bed gasifier 302
12.4.2.4. Entrained-flow gasifier 303
12.4.2.5. Other types 304
12.4.3. Process design 304
12.4.4. Plasma gasification 306
12.5. Process products 307
12.5.1. Synthesis gas 307
12.5.2. Carbon dioxide 308
12.5.3. Tar 308
12.5.4. Particulate matter 310
12.5.5. Halogens/acid gases 310
12.5.6. Heavy metals 311
12.5.7. Alkalis 312
12.5.8. Slag 312
12.6. Advantages and limitations 313
Chapter 13: Gasification for synthetic liquid fuel production 318
13.1. Introduction 318
13.2. Applications and products 319
13.2.1. Chemicals and fertilizers 319
13.2.2. Substitute natural gas 319
13.2.3. Hydrogen for petroleum refining 320
13.2.4. Transportation fuels 321
13.2.5. Transportation fuels from tar sand bitumen 321
13.2.6. Power generation 322
13.2.7. Waste-to-energy gasification 323
13.2.8. Biomass gasification 324
13.3. Environmental benefits of gasification-based systems 326
13.3.1. Carbon dioxide capture 327
13.3.2. Lower air emissions 327
13.3.3. Solids generation 327
13.3.4. Reduced water use 328
13.4. A process for now and the future 328
13.4.1. The process 328
13.4.2. Refineries of the future 330
13.4.3. Economic aspects 331
13.4.4. Market outlook 332
13.5. Conclusions 333
Index 336

Woodhead publishing series in energy


1 Generating power at high efficiency: Combined cycle technology for sustainable energy production
Eric Jeffs

2 Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment
Edited by Kenneth L. Nash and Gregg J. Lumetta

3 Bioalcohol production: Biochemical conversion of lignocellulosic biomass
Edited by Keith W. Waldron

4 Understanding and mitigating ageing in nuclear power plants: Materials and operational aspects of plant life management (PLiM)
Edited by Philip G. Tipping

5 Advanced power plant materials, design and technology
Edited by Dermot Roddy

6 Stand-alone and hybrid wind energy systems: Technology, energy storage and applications
Edited by John K. Kaldellis

7 Biodiesel science and technology: From soil to oil
Jan C. J. Bart, Natale Palmeri and Stefano Cavallaro

8 Developments and innovation in carbon dioxide (CO2) capture and storage technology Volume 1: Carbon dioxide (CO2) capture, transport and industrial applications
Edited by M. Mercedes Maroto-Valer

9 Geological repository systems for safe disposal of spent nuclear fuels and radioactive waste
Edited by Joonhong Ahn and Michael J. Apted

10 Wind energy systems: Optimising design and construction for safe and reliable operation
Edited by John D. Sørensen and Jens N. Sørensen

11 Solid oxide fuel cell technology: Principles, performance and operations
Kevin Huang and John Bannister Goodenough

12 Handbook of advanced radioactive waste conditioning technologies
Edited by Michael I. Ojovan

13 Membranes for clean and renewable power applications
Edited by Annarosa Gugliuzza and Angelo Basile

14 Materials for energy efficiency and thermal comfort in buildings
Edited by Matthew R. Hall

15 Handbook of biofuels production: Processes and technologies
Edited by Rafael Luque, Juan Campelo and James Clark

16 Developments and innovation in carbon dioxide (CO2) capture and storage technology Volume 2: Carbon dioxide (CO2) storage and utilisation
Edited by M. Mercedes Maroto-Valer

17 Oxy-fuel combustion for power generation and carbon dioxide (CO2) capture
Edited by Ligang Zheng

18 Small and micro combined heat and power (CHP) systems: Advanced design, performance, materials and applications
Edited by Robert Beith

19 Advances in clean hydrocarbon fuel processing: Science and technology
Edited by M. Rashid Khan

20 Modern gas turbine systems: High efficiency, low emission, fuel flexible power generation
Edited by Peter Jansohn

21 Concentrating solar power technology: Principles, developments and applications
Edited by Keith Lovegrove and Wes Stein

22 Nuclear corrosion science and engineering
Edited by Damien Féron

23 Power plant life management and performance improvement
Edited by John E. Oakey

24 Electrical drives for direct drive renewable energy systems
Edited by Markus Mueller and Henk Polinder

25 Advanced membrane science and technology for sustainable energy and environmental applications
Edited by Angelo Basile and Suzana Pereira Nunes

26 Irradiation embrittlement of reactor pressure vessels (RPVs) in nuclear power plants
Edited by Naoki Soneda

27 High temperature superconductors (HTS) for energy applications
Edited by Ziad Melhem

28 Infrastructure and methodologies for the justification of nuclear power programmes
Edited by Agustín Alonso

29 Waste to energy conversion technology
Edited by Naomi B. Klinghoffer and Marco J. Castaldi

30 Polymer electrolyte membrane and direct methanol fuel cell technology Volume 1: Fundamentals and performance of low temperature fuel cells
Edited by Christoph Hartnig and Christina Roth

31 Polymer electrolyte membrane and direct methanol fuel cell technology Volume 2: In situ characterization techniques for low temperature fuel cells
Edited by Christoph Hartnig and Christina Roth

32 Combined cycle systems for near-zero emission power generation
Edited by Ashok D. Rao

33 Modern earth buildings: Materials, engineering, construction and applications
Edited by Matthew R. Hall, Rick Lindsay and Meror Krayenhoff

34 Metropolitan sustainability: Understanding and improving the urban environment
Edited by Frank Zeman

35 Functional materials for sustainable energy applications
Edited by John A. Kilner, Stephen J. Skinner, Stuart J. C. Irvine and Peter P. Edwards

36 Nuclear decommissioning: Planning, execution and international experience
Edited by Michele Laraia

37 Nuclear fuel cycle science and engineering
Edited by Ian Crossland

38 Electricity transmission, distribution and storage systems
Edited by Ziad Melhem

39 Advances in biodiesel production: Processes and technologies
Edited by Rafael Luque and Juan A. Melero

40 Biomass combustion science, technology and engineering
Edited by Lasse Rosendahl

41 Ultra-supercritical coal power plants: Materials, technologies and optimisation
Edited by Dongke Zhang

42 Radionuclide behaviour in the natural environment: Science, implications and lessons for the nuclear industry
Edited by Christophe Poinssot and Horst Geckeis

43 Calcium and chemical looping technology for power generation and carbon dioxide (CO2) capture: Solid oxygen- and CO2-carriers
Paul Fennell and E. J. Anthony

44 Materials’ ageing and degradation in light water reactors: Mechanisms, and management
Edited by K. L. Murty

45 Structural alloys for power plants: Operational challenges and high-temperature materials
Edited by Amir Shirzadi and Susan Jackson

46 Biolubricants: Science and technology
Jan C. J. Bart, Emanuele Gucciardi and Stefano Cavallaro

47 Advances in wind turbine blade design and materials
Edited by Povl Brøndsted and Rogier P. L. Nijssen

48 Radioactive waste management and contaminated site clean-up: Processes, technologies and international experience
Edited by William E. Lee, Michael I. Ojovan, Carol M. Jantzen

49 Probabilistic safety assessment for optimum nuclear power plant life management (PLiM): Theory and application of reliability analysis methods for major power plant...

Erscheint lt. Verlag 29.8.2014
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
ISBN-10 0-85709-808-X / 085709808X
ISBN-13 978-0-85709-808-5 / 9780857098085
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 4,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 4,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99
200 Aufgaben zum sicheren Umgang mit Quellen ionisierender Strahlung

von Jan-Willem Vahlbruch; Hans-Gerrit Vogt

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
34,99