Advances in Natural Deduction (eBook)
XVI, 279 Seiten
Springer Netherlands (Verlag)
978-94-007-7548-0 (ISBN)
This collection of papers, celebrating the contributions of Swedish logician Dag Prawitz to Proof Theory, has been assembled from those presented at the Natural Deduction conference organized in Rio de Janeiro to honour his seminal research. Dag Prawitz's work forms the basis of intuitionistic type theory and his inversion principle constitutes the foundation of most modern accounts of proof-theoretic semantics in Logic, Linguistics and Theoretical Computer Science.
The range of contributions includes material on the extension of natural deduction with higher-order rules, as opposed to higher-order connectives, and a paper discussing the application of natural deduction rules to dealing with equality in predicate calculus. The volume continues with a key chapter summarizing work on the extension of the Curry-Howard isomorphism (itself a by-product of the work on natural deduction), via methods of category theory that have been successfully applied to linear logic, as well as many other contributions from highly regarded authorities. With an illustrious group of contributors addressing a wealth of topics and applications, this volume is a valuable addition to the libraries of academics in the multiple disciplines whose development has been given added scope by the methodologies supplied by natural deduction. The volume is representative of the rich and varied directions that Prawitz work has inspired in the area of natural deduction.
This collection of papers, celebrating the contributions of Swedish logician Dag Prawitz to Proof Theory, has been assembled from those presented at the Natural Deduction conference organized in Rio de Janeiro to honour his seminal research. Dag Prawitz's work forms the basis of intuitionistic type theory and his inversion principle constitutes the foundation of most modern accounts of proof-theoretic semantics in Logic, Linguistics and Theoretical Computer Science.The range of contributions includes material on the extension of natural deduction with higher-order rules, as opposed to higher-order connectives, and a paper discussing the application of natural deduction rules to dealing with equality in predicate calculus. The volume continues with a key chapter summarizing work on the extension of the Curry-Howard isomorphism (itself a by-product of the work on natural deduction), via methods of category theory that have been successfully applied to linear logic, as well as many other contributions from highly regarded authorities. With an illustrious group of contributors addressing a wealth of topics and applications, this volume is a valuable addition to the libraries of academics in the multiple disciplines whose development has been given added scope by the methodologies supplied by natural deduction. The volume is representative of the rich and varied directions that Prawitz work has inspired in the area of natural deduction.
Chapter 1. Generalizaed elimination inferences; Schroeder-Heister, Peter.- Chapter 2. Revisiting Zucker's work on the Correspondence between Cut-Elimination and Normalisation; Urban, Christian.- Chapter 3. Proofs, Reasoning and the Metamorphosis of Logic; Joinet, Jean-Baptiste.- Chapter 4. Natural Deduction for Equality: The Missing Entity; de Quieroz, Ruy J.G.B. and de Oliveira, Anjolina G.- Chapter 5. Proof-theoretical Conception of Logic; Legris, Javier.- Chapter 6. On the Structure of Natural deduction Derivations for "Generally"; Vana, Leonardo B., Veloso, Paulo A.S. , and Veloso, Sheila R.M.- Chapter 7. Type Theories from Barendregt's Cube for Theorem Provers; Seldin, Jonathan P.- Chapter 8. What is propositional logic, a theory of, if anything?; Chateaubriand, Oswaldo.- Chapter 9. Categorical Semantics of Linear Logic for All; de Paiva, Valeria.- Chapter 10. Rough sets and proof-theory; Bellin, Gianluigi.- Chapter 11. Decomposition of Reduction; Zimmermann, Ernst.- Chapter 12. An approach to general proof theory and a conjecture of a kind of completeness of intuitionistic logic revisited; Prawitz, Dag.
Erscheint lt. Verlag | 8.7.2014 |
---|---|
Reihe/Serie | Trends in Logic | Trends in Logic |
Zusatzinfo | XVI, 279 p. 24 illus. |
Verlagsort | Dordrecht |
Sprache | englisch |
Themenwelt | Geisteswissenschaften ► Philosophie ► Allgemeines / Lexika |
Geisteswissenschaften ► Philosophie ► Logik | |
Mathematik / Informatik ► Informatik ► Theorie / Studium | |
Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika | |
Technik | |
Schlagworte | cut-elimination • Gentzen systems • Natural Deduction and Sequent Calculus • Normalization Theorem • Proof-Theoretic Semantics • proof-theory |
ISBN-10 | 94-007-7548-2 / 9400775482 |
ISBN-13 | 978-94-007-7548-0 / 9789400775480 |
Haben Sie eine Frage zum Produkt? |
Größe: 4,2 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich