Mathematical Statistics with Resampling and R (eBook)

eBook Download: PDF
2014 | 1. Auflage
432 Seiten
Wiley (Verlag)
978-1-118-62575-0 (ISBN)

Lese- und Medienproben

Mathematical Statistics with Resampling and R -  Laura M. Chihara,  Tim C. Hesterberg
Systemvoraussetzungen
153,13 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book bridges the latest software applications with the benefits of modern resampling techniques Resampling helps students understand the meaning of sampling distributions, sampling variability, P-values, hypothesis tests, and confidence intervals. This groundbreaking book shows how to apply modern resampling techniques to mathematical statistics. Extensively class-tested to ensure an accessible presentation, Mathematical Statistics with Resampling and R utilizes the powerful and flexible computer language R to underscore the significance and benefits of modern resampling techniques. The book begins by introducing permutation tests and bootstrap methods, motivating classical inference methods. Striking a balance between theory, computing, and applications, the authors explore additional topics such as: Exploratory data analysis Calculation of sampling distributions The Central Limit Theorem Monte Carlo sampling Maximum likelihood estimation and properties of estimators Confidence intervals and hypothesis tests Regression Bayesian methods Throughout the book, case studies on diverse subjects such as flight delays, birth weights of babies, and telephone company repair times illustrate the relevance of the real-world applications of the discussed material. Key definitions and theorems of important probability distributions are collected at the end of the book, and a related website is also available, featuring additional material including data sets, R scripts, and helpful teaching hints. Mathematical Statistics with Resampling and R is an excellent book for courses on mathematical statistics at the upper-undergraduate and graduate levels. It also serves as a valuable reference for applied statisticians working in the areas of business, economics, biostatistics, and public health who utilize resampling methods in their everyday work.

LAURA CHIHARA, PhD, is Professor of Mathematics at CarletonCollege. She has extensive experience teaching mathematicalstatistics and applied regression analysis. She has supervisedundergraduates working on statistics projects for local businessesand organizations such as Target Corporation and the MinnesotaPollution Control Agency. Dr. Chihara has experience with S+ and Rfrom her work at Insightful Corporation (formerly MathSoft) and instatistical consulting. TIM HESTERBERG, PhD, is Senior Ads Quality Statisticianat Google. He was a senior research scientist for InsightfulCorporation and led the development of S+Resample and other S+ andR software. Dr. Hesterberg has published numerous articles in theareas of bootstrap and related resampling techniques, Monte Carlosimulation methodology, modern regression, tectonic deformationestimation, and electric demand forecasting.

"Mathematical Statistics with Resampling and R is a great resource for intermediate and advanced statistics students who want to achieve an indepth understanding of resampling techniques backed by practical implementation." (Book Pleasures, 2012)

"It is highly recommended to someone with a good background in mathematics, probability, and basic statistics who wants to learn about the theory and about resampling and how it relates to traditional methods, and how to implement resamplinjg in R. The book is also a wonderful source of simulations to support the teaching of statistics." (Journal of Biopharmaceutical Statistics, 2011)

"It is less demanding mathematically, more applied in its emphasis, and more modern in content than the usual book, which makes it a good choice if you want a modern applied book at the level of Larsen and Marx (1986)."- George W. Cobb, Mount Holyoke College Department of Mathematics and Statsitics (Chilean Journal of Statistics, 1 April 2011)

Erscheint lt. Verlag 21.8.2014
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte Mathematische Statistik • Probability & Mathematical Statistics • Statistics • Statistics - Text & Reference • Statistik • Statistik / Lehr- u. Nachschlagewerke • Wahrscheinlichkeitsrechnung u. mathematische Statistik
ISBN-10 1-118-62575-7 / 1118625757
ISBN-13 978-1-118-62575-0 / 9781118625750
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich