Nanoscience and the Environment -

Nanoscience and the Environment (eBook)

eBook Download: PDF | EPUB
2014 | 1. Auflage
240 Seiten
Elsevier Science (Verlag)
978-0-08-099415-4 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
147,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Nanomaterials in the Environment covers all aspects of manufactured nanomaterials and their impact and behavior in the environment. Starting with a general overview of the field, emphasizing key points and background, the book then covers crucial specific areas, including nanomaterial transformations in the environment due to dissolution, aggregation, and other processes, and the modeling of environmental exposure and fate. A chapter on formation of the 'eco-corona” investigates the state of the art with specific reference to the protein corona literature in human health. Finally, there are chapters on mechanisms of biouptake and toxicity.

The fast-moving nature of the field and the quality of the submissions make this book essential reading for all those working in this area. It is suitable for researchers from Masters-level upwards, and for regulators and industry. The book can also be used as a high-level teaching aid.


  • Edited and written by leaders in this area
  • Environmental behavior and effects are discussed in depth
  • Useful for specialists and generalists at all levels of experience

Nanomaterials in the Environment covers all aspects of manufactured nanomaterials and their impact and behavior in the environment. Starting with a general overview of the field, emphasizing key points and background, the book then covers crucial specific areas, including nanomaterial transformations in the environment due to dissolution, aggregation, and other processes, and the modeling of environmental exposure and fate. A chapter on formation of the "e;eco-corona? investigates the state of the art with specific reference to the protein corona literature in human health. Finally, there are chapters on mechanisms of biouptake and toxicity. The fast-moving nature of the field and the quality of the submissions make this book essential reading for all those working in this area. It is suitable for researchers from Masters-level upwards, and for regulators and industry. The book can also be used as a high-level teaching aid. Edited and written by leaders in this area Environmental behavior and effects are discussed in depth Useful for specialists and generalists at all levels of experience

Front Cover 1
Nanoscience and the Environment 4
Copyright 5
Contents 6
Contributors 10
Preface 12
Chapter 1: Overview of Environmental Nanoscience 14
1. Introduction 14
2. History: From Empirical Use to Discoveries 16
3. Definitions 20
3.1. Nanometer and Nanoscale 20
3.2. Nanoscience and Nanotechnology 21
3.3. Nanomaterials 28
4. Novel Properties of NMs 31
4.1. Specific Surface Area, Surface Atoms, and Defects 31
4.2. Quantum Confinement 34
4.3. Uptake and Toxicity 34
5. Synthesis Approaches and Requirements 34
6. Classification 35
6.1. Chemistry 36
6.2. Source 37
6.3. Morphology 37
6.4. State and Location in Products 38
7. Nanotechnology Market and Production 39
8. Exposure, Fate, and Transformations of NMs in the Environment 41
9. Environmental and Human Health Toxicity of NMs 47
10. Issues to be Addressed 57
10.1. Fundamental Science Versus Regulatory Risk Assessment 57
10.2. Definition and Nomenclature 58
10.3. Environmental Fate and Exposure of NMs 58
10.4. Bioavailability and Bioaccumulation 58
10.5. Minimum NM Characterization for EHS Research and NM Regulation 59
10.6. Effect of NM Properties on Their Toxicity 59
10.7. Dose and Dose Metrics 60
11. Conclusion 60
Acknowledgments 61
References 61
Chapter 2: Transformations of Nanomaterials in the Environment 68
1. Introduction 68
2. NM Transformations 70
2.1. Chemical Transformations 72
2.1.1. Redox Reactions 73
2.1.2. Dissolution and Ligation 75
2.2. Physical Transformations 77
2.2.1. Aggregation 77
2.2.2. Adsorption of Biomacromolecules 82
2.3. Biologically Mediated Transformations 86
3. Effect of Transformations on the Ability to Detect and Quantify NMs in Biological and Environmental Media 89
3.1. Coating Alteration 89
3.2. Dissolution and Ligation 90
3.3. Redox Reactions 90
3.4. Aggregation 91
4. Overall Implications for NM EHS Research and Future Needs 91
Acknowledgments 93
References 93
Chapter 3: Environmental Fate and Exposure Modeling of Nanomaterials 102
1. Introduction 102
2. Environmental Fate Models for Organic Chemicals 103
3. Road Map for Developing Environmental Fate Models for ENMs 106
4. Model Input Data: Environmental Emissions 109
5. Model Input Data: ENM Properties 113
5.1. General Aspects 113
5.2. Phase Partitioning 114
6. Environmental Fate Modeling for ENMs 116
6.1. Aquatic Systems 116
6.2. Soil Systems 126
7. Conclusions 131
Acknowledgments 133
References 133
Chapter 4: Macromolecular Coronas and Their Importance in Nanotoxicology and Nanoecotoxicology 140
1. Introduction 140
2. The Biomolecule Corona: An Established Paradigm in Nanomedicine and Human Nanosafety 145
3. Toward an Eco-Corona: Translating the Ideas of the Biomolecule Corona Toward a Paradigm in Environmental Toxicity 150
4. Structural Complexity of HS 152
5. Comparison of Factors and Effects of NM Interactions with Proteins and Humics 156
6. Corona Evolution as NMs are Translocated in the Environment and Within Organisms 156
7. The Role of ``Secreted´´ or Exuded Coronas? 159
8. Toward Design of Environmental Coronas and Environmentally ``Safer´´ NMs 161
9. Conclusions 162
Acknowledgments 163
References 163
Chapter 5: Bioavailability and Bioaccumulation of Metal-Based Engineered Nanomaterials in Aquatic Environments: Concepts and. 170
1. Introduction 170
2. Me-ENMs Provide a Unique Type of Exposure 172
3. Definitions and Drivers of Bioavailability and Bioaccumulation 174
4. Mechanisms of Uptake 175
5. Particle Uptake Versus Dissolved Uptake 178
6. Effect of Particle Attributes on Bioavailability 183
7. Effects of Environment and Environmental Transformations on Bioavailability 184
8. Biological Influences 188
9. New Challenges in Quantifying Bioavailability/Bioaccumulation 188
9.1. Particle Characterization 189
9.2. Detection 189
10. Models 192
11. Conclusions 196
References 198
Chapter 6: Mechanisms of Nanotoxicity 208
1. Introduction 208
2. What Are Points of Interaction of ENM with Organisms in the Environment? 211
3. Influence on Environment-Organism and Organism–Internal Barriers 213
3.1. Epithelia and Endothelia as Gate Keepers in Animals 213
3.2. Cell Wall as Barrier in Algae, Bacteria, and Plants 215
3.3. Extracellular Matrices 216
4. Stress Responses in Cells 217
4.1. Cell Membrane and Cytoskeleton 218
4.2. Lysosomes 219
4.3. Mitochondria 220
4.4. Nucleus 220
5. Systemic Stress Responses 221
5.1. Immune System 222
5.2. Impact on Development and Behavior 223
6. Interference with Ecosystem Network Interactions 224
6.1. Bioaccumulation and Biomagnification 224
6.2. Impact on Symbionts 225
6.3. Impact on Communication 226
7. Conclusions and Outlook 227
Acknowledgments 228
References 228
Index 236

Chapter 2

Transformations of Nanomaterials in the Environment


Stacey M. Louie*,; Rui Ma*,; Gregory V. Lowry*,    * Center for Environmental Implications of Nanotechnology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
† Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

Abstract


Nanomaterials (NMs) will undergo a variety of transformations in the natural environment that can significantly change their transport behavior, ultimate fate, and toxicity. Chemical transformations include oxidation–reduction reactions, ligation, and dissolution (which are often associated with a redox reaction). Physical transformations include aggregation or disaggregation and adsorption of naturally occurring macromolecules. Biological interactions and biouptake of NMs can result in further physicochemical transformations. The current state of knowledge on the effects of these transformations on NM properties and hence their behavior, persistence, and risk in the environment is presented. The implications of these transformations for detection and characterization of NMs in biological and environmental matrices are also discussed. Finally, challenges for risk assessment of NMs due to their environmental transformations are identified.

Keywords

Nanoparticle

Environmental fate

Transformation

Sulfidation

Transport

Toxicity

Biouptake

Detection

Natural organic matter

1 Introduction


The Earth is awash with nanophase minerals produced in natural processes, for example, volcanic eruptions, sea spray aerosols, and continental mineral dust. Estimates of the annual production of nanophase minerals are as high as a million tons (Hochella et al., 2012). The increasing use of engineered nanomaterials (NMs) in commercial products translates into an increasing presence in the biosphere. Here, we define NMs as naturally occurring or engineered materials having at least one dimension in the nanoscale (ca. 1–100 nm). The extremely small sizes of these NMs result in a high percentage of its atoms at the surface, which can result in novel properties and reactivity compared to a larger size material with the same chemical composition (Auffan et al., 2009; Hochella et al., 2008). For example, gold nanoparticles (NPs) that are typically inert become catalytic as their size is decreased to a few nanometers (Haruta, 2004), and the surface area normalized rate of oxidation of Mn2 + by hematite NPs greatly increases when the particle size becomes less than about 10 nm (Madden and Hochella, 2005). The very high reactivity of NMs, either due to their large surface to volume ratio or unique reactivity with decreasing size, implies that these materials will readily transform in the environment. This indeed is the case for many NMs, and a poor understanding of these transformations complicates the forecasting of their fate, transport, reactivity, and toxicity in environmental systems.

Assessing the environmental and human health implications of engineered NMs requires an understanding of the potential exposure routes and toxicological effects from acute and chronic exposures. Research has been performed to determine the fate, transport, and toxic properties of engineered NMs, but much of this has focused on pristine or “as manufactured” NMs or where modifications of the materials are not assessed (Levard et al., 2013). Transformations of the NMs will affect their fate, transport, and toxic properties. For example, many metallic or metal oxide NPs (e.g., Ag, ZnO, CuO) may ultimately become sulfidized in the environment (Liu et al., 2011; Ma et al., 2013). Sulfidation of the metal or metal oxide NPs changes their aggregation state, surface chemistry and charge, as well as their ability to release potentially toxic ions such as Zn2 + or Ag+ (Levard et al., 2011a), and therefore their persistence and toxicity. Similarly, the interaction between gold NMs and humic substances (HS) including natural organic matter (NOM) results in a nanoscale coating of the NMs, resulting in greater colloidal stability at low pH (Diegoli et al., 2008). This coating process is analogous to the formation of protein coronas in mammalian systems (Cedervall et al., 2007), which dramatically changes aggregation, deposition, and toxic properties (Fabrega et al., 2009a; Li et al., 2008a). We currently lack sufficient knowledge of the types, rates, and extent of transformations expected for NMs in environmental and biological systems. By extension, we also fail to understand the impact of those transformations on the fate, transport, and toxicity of NMs, and potentially bias our conclusions about the toxicity or behavior of the materials by neglecting to adequately characterize NM transformations. To correctly forecast the environmental and human health risks associated with these materials, the environmental nanoscience research community must endeavor to broaden our knowledge of the transformations of NMs.

One goal of the current global nano environmental, health, and safety (EHS) research enterprise is to correlate the properties of engineered NMs with their risk, that is, potential for exposure and ability to produce a toxic effect in exposed organisms. For environmental exposures, for example, exposure of aquatic or sediment dwelling organisms, these risks cannot be determined without consideration of the complexity of natural systems (and therefore, transformations of the NPs, in particular). For example, some aquatic plants exposed to silver nanoparticles (Ag NPs) released exudates that interact with the Ag NPs and altered their aggregation state and ability to release Ag ion, Ag+ (Bone et al., 2012; Unrine et al., 2012). Since the toxicity of Ag NPs is correlated with the release of Ag+ and other dissolved Ag species (Levard et al., 2013; Xiu et al., 2012), the toxicity potential of Ag NPs will depend on the properties of the environment (e.g., type and number of plants) into which the Ag NPs are released. The research framework proposed by the U.S. National Research Council (NRC, 2012) recommends that nano EHS research focuses on identifying “critical elements of nanomaterial interactions” affecting exposure, hazards, and hence risks posed by engineered NMs. These critical elements include physical, chemical, and biological transformations that ultimately influence NM persistence, bioavailability or biouptake, reactivity, and toxicity. These are currently poorly understood and are not yet predictable from the NM and environment properties.

This chapter reviews the types of transformations that NMs undergo in biological and environmental media (with a focus on environmental media), and describes how these transformations affect the exposure potential and toxicity potential of engineered NMs, and the ability to measure them in biological and environmental media. It concludes with implications of these findings and potential future research to close existing knowledge gaps.

2 NM Transformations


Engineered NMs can be composed of a single material (e.g., Ag or Au), but often have a core–shell configuration (Figure 2.1). This core–shell configuration can be an engineered inorganic shell, for example, a quantum dot with a CdSe core and a ZnS shell. In nearly all cases, engineered NMs are designed with an organic coating (Table 2.1). This can be a surfactant or polymeric coating, which provides electrostatic or steric stabilization against aggregation (Phenrat et al., 2008) or can provide specific functionality or targeting properties (Farokhzad et al., 2004). Transformations of NMs in the environment affect the core, shell, or organic coating as described in this chapter.

Figure 2.1 Typical core–shell structures of Ag(0), ZnO NPs, and CdSe/ZnS quantum dots. The metal or metal oxide core material is surrounded by a shell of either organic macromolecules or molecules, and/or a metal oxide or metal sulfide. The shell can be coherent and help stabilize the NPs against dissolution or reaction with dissolved constituents (e.g., for the ZnS shell on quantum dots), or can be discontinuous and provide less protection against reactions with other dissolved components.

Table 2.1

Examples of Nanomaterials and Capping Agents/Coatings (Not an Exhaustive List)

Zinc oxide 2-Mercaptoethanol
Triethoxycarpryl silane
Triethanolamine
Acetate
Poly(vinylpyrrolidone) (PVP)
Polysaccharides
Silver Citrate
Decanethiol
Tannic acid
Ethylenediaminetetraacetic acid (EDTA)
Poly(ethylene glycol) (PEG)
PVP
Gum arabic
Gold Citrate
Octanethiol
Cetyltrimethyl ammonium bromide (CTAB)
Cysteine, tannic acid
Biotin
Bovine serum albumin (BSA)
Polypeptides
Cerium oxide Oleic acid PVP
Poly(acrylic acid)-octyl amine
Titanium dioxide Oleic acid Poly(acrylic acid)
Quantum dots (CdSe, CdS cores with...

Erscheint lt. Verlag 26.7.2014
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 0-08-099415-6 / 0080994156
ISBN-13 978-0-08-099415-4 / 9780080994154
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 8,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 11,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99
200 Aufgaben zum sicheren Umgang mit Quellen ionisierender Strahlung

von Jan-Willem Vahlbruch; Hans-Gerrit Vogt

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
34,99