Human Action Analysis with Randomized Trees
Seiten
2014
|
2015 ed.
Springer Verlag, Singapore
978-981-287-166-4 (ISBN)
Springer Verlag, Singapore
978-981-287-166-4 (ISBN)
This book will provide a comprehensive overview on human action analysis with randomized trees. We describe how the randomized trees can be used for action classification, action detection, action search, and action prediction.
This book will provide a comprehensive overview on human action analysis with randomized trees. It will cover both the supervised random trees and the unsupervised random trees. When there are sufficient amount of labeled data available, supervised random trees provides a fast method for space-time interest point matching. When labeled data is minimal as in the case of example-based action search, unsupervised random trees is used to leverage the unlabelled data. We describe how the randomized trees can be used for action classification, action detection, action search, and action prediction. We will also describe techniques for space-time action localization including branch-and-bound sub-volume search and propagative Hough voting.
This book will provide a comprehensive overview on human action analysis with randomized trees. It will cover both the supervised random trees and the unsupervised random trees. When there are sufficient amount of labeled data available, supervised random trees provides a fast method for space-time interest point matching. When labeled data is minimal as in the case of example-based action search, unsupervised random trees is used to leverage the unlabelled data. We describe how the randomized trees can be used for action classification, action detection, action search, and action prediction. We will also describe techniques for space-time action localization including branch-and-bound sub-volume search and propagative Hough voting.
Introduction to Human Action Analysis.- Supervised Trees for Human Action Recognition and Detection.- Unsupervised Trees for Human Action Search.- Propagative Hough Voting to Leverage Contextual Information.- Human Action Prediction with Multi-class Balanced Random Forest.- Conclusion.
Reihe/Serie | SpringerBriefs in Electrical and Computer Engineering | SpringerBriefs in Signal Processing |
---|---|
Zusatzinfo | 30 Illustrations, color; VIII, 83 p. 30 illus. in color. |
Verlagsort | Singapore |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Informatik ► Grafik / Design ► Digitale Bildverarbeitung |
Mathematik / Informatik ► Mathematik | |
Technik ► Elektrotechnik / Energietechnik | |
ISBN-10 | 981-287-166-7 / 9812871667 |
ISBN-13 | 978-981-287-166-4 / 9789812871664 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Modelle für 3D-Druck und CNC entwerfen
Buch | Softcover (2022)
dpunkt (Verlag)
34,90 €
alles zum Drucken, Scannen, Modellieren
Buch | Softcover (2024)
Markt + Technik Verlag
24,95 €