Science of Synthesis: Houben-Weyl Methods of Molecular Transformations Vol. 48 (eBook)
830 Seiten
Thieme (Verlag)
978-3-13-178481-0 (ISBN)
Science of Synthesis – Volume 48: Alkanes 1
Title page 3
Imprint 5
Preface 6
Overview 8
Table of Contents 10
Introduction 24
48.1 Product Class 1: Acyclic Alkanes 32
48.1.1 Synthesis by Metal Substitution with Retention of the Carbon Framework 32
48.1.1.1 Method 1: Synthesis by Protonation of Carbon--Metal Bonds 32
48.1.1.1.1 Variation 1: Acidolysis of Alkyl Derivatives of Metals from Groups 14 and 15 (Including Boron) 33
48.1.1.1.2 Variation 2: Protonolysis of Alkyl Derivatives of Metals from Groups 5--11 37
48.1.1.1.3 Variation 3: Protonolysis of Alkyl Derivatives of Metals from Groups 3, 4, 12, and 13 (Including Lanthanides and Actinides, Excluding Boron) 38
48.1.1.1.4 Variation 4: Protonolysis of Alkyl Derivatives of Metals from Groups 1 and 2 41
48.1.1.2 Method 2: Synthesis by Hydrogenolysis of Carbon--Metal Bonds 46
48.1.1.2.1 Variation 1: Hydrogenolysis and Reductive Cleavage of Carbon--Metal Bonds 46
48.1.1.2.2 Variation 2: Reductive Elimination from Alkyl--Transition Metal Hydrido Complexes 48
48.1.2 Synthesis by Metal Substitution with Extension of the Carbon Framework 52
48.1.2.1 Method 1: Noncatalyzed Coupling Reactions of Nonactivated Alkyl Electrophiles with Organometallic Reagents 53
48.1.2.1.1 Variation 1: Using Main-Group Organometallic Reagents 53
48.1.2.1.2 Variation 2: Using Transition-Metal Organometallic Reagents 55
48.1.2.2 Method 2: Catalyzed Coupling Reactions of Nonactivated Alkyl Electrophiles with Organometallic Reagents 59
48.1.2.2.1 Variation 1: Couplings of Alkyl Grignard Reagents (Kumada--Tamao--Corriu Reaction) Mediated by Copper, Silver, Nickel, Palladium, Iron, and Cobalt 61
48.1.2.2.2 Variation 2: Couplings of Alkylzinc Reagents (Negishi Reaction) Mediated by Nickel and Palladium 74
48.1.2.2.3 Variation 3: Couplings of Alkyl Boron Compounds (Suzuki--Miyaura Reaction) Mediated by Palladium and Nickel 86
48.1.2.2.4 Variation 4: Couplings of Other Alkyl Organometallic Compounds 99
48.1.2.3 Method 3: Oxidative Coupling of Alkyl Organometallic Reagents 100
48.1.2.3.1 Variation 1: Reductive Elimination from Dialkyl Transition-Metal Complexes 106
48.1.2.3.2 Variation 2: Kolbe Electrolysis 108
48.1.2.4 Method 4: Reductive Coupling of Alkyl Halides 110
48.1.3 Synthesis by Reduction without C--C Bond Cleavage 120
48.1.3.1 Reduction of Carbonic or Carboxylic Acids, Aldehydes, Ketones, or Derivatives 120
48.1.3.1.1 Method 1: The Clemmensen Reduction (Deoxygenation of Aldehydes or Ketones Using Zinc and Hydrochloric Acid) 122
48.1.3.1.1.1 Variation 1: Reduction with Zinc--Hydrochloric Acid in an Aqueous Solution 123
48.1.3.1.1.2 Variation 2: Reduction with Zinc--Hydrochloric Acid in the Presence of Water-Miscible Solvents 124
48.1.3.1.1.3 Variation 3: Reduction with Zinc--Hydrochloric Acid in the Presence of Water-Immiscible Solvents 125
48.1.3.1.1.4 Variation 4: Reduction with Zinc in Organic Solvents Saturated with Hydrogen Chloride 125
48.1.3.1.1.5 Variation 5: Ultrasound-Assisted Zinc--Protic Acid Reduction 127
48.1.3.1.1.6 Variation 6: Miscellaneous Methods 127
48.1.3.1.2 Method 2: Other Direct Deoxygenation Methods 128
48.1.3.1.2.1 Variation 1: Deoxygenation of Aromatic Ketones with Hydrogen Iodide 128
48.1.3.1.2.2 Variation 2: Deoxygenation of Carbonyl Compounds by Catalytic Hydrogenation 128
48.1.3.1.2.3 Variation 3: Deoxygenation of Aromatic Acids, Aldehydes, and Ketones Using the Trichlorosilane--Tripropylamine Couple 129
48.1.3.1.2.4 Variation 4: Deoxygenation of Ketones Using the Triethylsilane--Trifluoroacetic Acid Couple 130
48.1.3.1.2.5 Variation 5: Deoxygenation of Carboxylic Acids, Esters, Aldehydes, and Ketones Using Silanes in the Presence of Lewis Acids 131
48.1.3.1.2.6 Variation 6: Deoxygenation of Aromatic and a,ß-Unsaturated Ketones Using the Sodium Borohydride--Trifluoroacetic Acid Couple 133
48.1.3.1.2.7 Variation 7: Miscellaneous Methods 134
48.1.3.1.3 Method 3: The Wolff--Kishner Reduction (Reduction of Aldehydes and Ketones via Hydrazones) 134
48.1.3.1.3.1 Variation 1: The Huang-Minlon Modification 137
48.1.3.1.3.2 Variation 2: The Barton Modification 140
48.1.3.1.3.3 Variation 3: The Cram and the Henbest Modifications 142
48.1.3.1.3.4 Variation 4: The Nagata--Itazaki Modification 144
48.1.3.1.3.5 Variation 5: The Furrow--Myers Modification 146
48.1.3.1.3.6 Variation 6: Microwave-Assisted Wolff--Kishner Reductions 148
48.1.3.1.3.7 Variation 7: Miscellaneous Reactions 148
48.1.3.1.4 Method 4: Reduction of Aldehydes and Ketones via Tosylhydrazones 149
48.1.3.1.4.1 Variation 1: Reduction of Tosylhydrazones with Lithium Aluminum Hydride 150
48.1.3.1.4.2 Variation 2: Reduction of Tosylhydrazones with Sodium Borohydride 151
48.1.3.1.4.3 Variation 3: Reduction of Tosylhydrazones with Sodium Cyanoborohydride--Protic Acid 152
48.1.3.1.4.4 Variation 4: Reduction of Tosylhydrazones with Catecholborane 154
48.1.3.1.4.5 Variation 5: Miscellaneous Methods 156
48.1.3.1.5 Method 5: Deoxygenation of Aldehydes and Ketones via Dithioacetals and Other Sulfur-Containing Derivatives 157
48.1.3.1.5.1 Variation 1: Reduction of Dithioacetals Using Raney Nickel 158
48.1.3.1.5.2 Variation 2: Reduction of Dithioacetals Using Dissolving Metals 161
48.1.3.1.5.3 Variation 3: Reduction of Dithioacetals Using Tributyltin Hydride 161
48.1.3.1.5.4 Variation 4: Reduction of Dithioacetals with Hydrazine 163
48.1.3.1.5.5 Variation 5: Miscellaneous Methods 163
48.1.3.2 Reduction of Haloalkanes 172
48.1.3.2.1 Method 1: Alkanes from Fluoroalkanes 172
48.1.3.2.1.1 Variation 1: Reduction of Fluoroalkanes with Alkali Metals 173
48.1.3.2.1.2 Variation 2: Reduction of Fluoroalkanes with Hydrides 174
48.1.3.2.2 Method 2: Alkanes from Chloroalkanes 174
48.1.3.2.2.1 Variation 1: Reductive Cleavage of Chloroalkanes 174
48.1.3.2.2.2 Variation 2: Reductive Cleavage of Bromochloroalkanes 176
48.1.3.2.3 Method 3: Alkanes from Bromoalkanes 177
48.1.3.2.3.1 Variation 1: Reductive Cleavage of Bromoalkanes 178
48.1.3.2.4 Method 4: Alkanes from Iodoalkanes 180
48.1.3.3 Reduction of Alkanols and Derivatives 186
48.1.3.3.1 Method 1: Direct Replacement of C--OH Bonds by C--H Bonds in Benzylic, Allylic, or Other Activated Alcohols 188
48.1.3.3.1.1 Variation 1: Acid-Promoted Catalytic Hydrogenolysis of Alcohols 188
48.1.3.3.1.2 Variation 2: Dissolving-Metal Reduction of Benzylic Alcohols 189
48.1.3.3.1.3 Variation 3: Reduction of Alcohols by Mixed Metal Hydrides in the Presence of Lewis or Protic Acids 189
48.1.3.3.1.4 Variation 4: Reduction of Alcohols with the Triethylsilane/Trifluoroacetic Acid System or Other Silane/Acid Combinations 190
48.1.3.3.1.5 Variation 5: Deoxygenation of Alcohols with Diiododimethylsilane or Iodotrimethylsilane 191
48.1.3.3.1.6 Variation 6: Microwave-Promoted Deoxygenation of Benzylic Alcohols with Lawesson's Reagent and Hexacarbonylmolydenum(0) Catalyst 192
48.1.3.3.1.7 Variation 7: Deoxygenation of Alcohols by Electrolysis in the Presence of a Trialkyl- or Triarylphosphine 192
48.1.3.3.1.8 Variation 8: Deoxygenation of a-Hydroxy Ketones or a-Hydroxyaldehydes 193
48.1.3.3.1.9 Variation 9: Deoxygenation of Alcohols via Diazenes 193
48.1.3.3.2 Method 2: Deoxygenation of Alcohols via Carboxylic Esters 198
48.1.3.3.2.1 Variation 1: Photolysis of Carboxylic Esters 198
48.1.3.3.2.2 Variation 2: Deoxygenation of Alcohols through Electrochemical Reduction of Their Esters 200
48.1.3.3.2.3 Variation 3: Dissolving-Metal Deoxygenation of Alcohols via Their Carboxylic Esters 200
48.1.3.3.2.4 Variation 4: Deoxygenation of Alcohols via Their N,N'-Dicyclohexylcarbamimidate Esters 202
48.1.3.3.3 Method 3: Deoxygenation of Alcohols via Their Sulfonyl Derivatives 202
48.1.3.3.3.1 Variation 1: Reduction of Sulfonate Esters with Lithium Aluminum Hydride and Lithium Triethylborohydride 204
48.1.3.3.3.2 Variation 2: Deoxygenation of Sulfonate Esters with Sodium Borohydride, Sodium Cyanoborohydride, or Lithium (Diisopropylamino)borohydride 208
48.1.3.3.3.3 Variation 3: Deoxygenation of Sulfonate Esters with Complex Copper Hydrides 209
48.1.3.3.3.4 Variation 4: Miscellaneous Reactions 209
48.1.3.3.4 Method 4: Deoxygenation of Alcohols via Phosphoryl Derivatives 210
48.1.3.3.4.1 Variation 1: Reduction of Phosphoramidate Derivative of Alcohols with Lithium in Ethylamine or with Lithium Naphthalenide 210
48.1.3.3.4.2 Variation 2: Reduction of Phosphate Esters of Alcohols with Lithium in Ethylamine or with Lithium Naphthalenide 213
48.1.3.3.4.3 Variation 3: Reduction of Alkoxyphosphonium Salts with Lithium Triethylborohydride 213
48.1.3.3.5 Method 5: The Barton--McCombie Deoxygenation Reaction Using Tributyltin Hydride or Other Metal Hydrides as the Hydrogen-Atom Source 213
48.1.3.3.5.1 Variation 1: Deoxygenation of Alcohols via S-Methyl Xanthates 218
48.1.3.3.5.2 Variation 2: Deoxygenation of Alcohols via Their 1H-Imidazol-1-ylcarbonothioyl Derivatives 225
48.1.3.3.5.3 Variation 3: Deoxygenation of Alcohols via O-Alkyl O-Phenyl Carbonothioates or O-Alkyl O-(Halophenyl) Carbonothioates 230
48.1.3.3.5.4 Variation 4: Deoxygenation of Alcohols via Benzenecarbothioates 237
48.1.3.3.5.5 Variation 5: Deoxygenation of Alcohols via Acylcarbamothioates 238
48.1.3.3.5.6 Variation 6: Deoxygenation of Alcohols via Thioformates 239
48.1.3.3.5.7 Variation 7: Deoxygenation of One Hydroxy Group in a Diol via a Cyclic Carbonothioate 240
48.1.3.3.5.8 Variation 8: Deoxygenation of Alcohols via Methyl Oxalates 242
48.1.3.3.5.9 Variation 9: Deoxygenation of Alcohols via Other Radicophilic Derivatives 245
48.1.3.3.5.10 Variation 10: Deoxygenation of Alcohols Using Polymer-Bound Stannanes 245
48.1.3.3.5.11 Variation 11: Deoxygenation of Alcohols Using Modified Stannanes 247
48.1.3.3.5.12 Variation 12: Deoxygenation of Alcohols Using Other Metal Hydrides 248
48.1.3.3.5.13 Variation 13: Deoxygenation of Alcohols Using Bis(tributyltin) Oxide--Poly(methylhydrosiloxane) 248
48.1.3.3.6 Method 6: The Barton--McCombie Deoxygenation of Alcohols Using Silanes as the Hydrogen-Atom Source 249
48.1.3.3.6.1 Variation 1: Using Triethylsilane 250
48.1.3.3.6.2 Variation 2: Using Diphenylsilane 250
48.1.3.3.6.3 Variation 3: Using 5,10-Dimethyl-5,10-dihydrosilaanthracene Derivatives 251
48.1.3.3.6.4 Variation 4: Using Tetraphenyldisilane 252
48.1.3.3.6.5 Variation 5: Using Tris(trimethylsilyl)silane 252
48.1.3.3.6.6 Variation 6: Using Silylated Dienes 254
48.1.3.3.6.7 Variation 7: Using a Silane--Thiol System 254
48.1.3.3.6.8 Variation 8: Reduction of Trifluoroacetates by Diphenylsilane 255
48.1.3.3.7 Method 7: The Barton--McCombie Deoxygenation of Alcohols Using Phosphorus Compounds and Miscellaneous Hydrogen-Atom Donors 255
48.1.3.3.7.1 Variation 1: Using Phosphinic Acid and Its Salts 256
48.1.3.3.7.2 Variation 2: Using Dialkyl Phosphites 257
48.1.3.3.7.3 Variation 3: Using Other Phosphorus Compounds 258
48.1.3.3.7.4 Variation 4: Using Propan-2-ol 258
48.1.3.3.7.5 Variation 5: Using Formate Anion 259
48.1.3.3.7.6 Variation 6: Using Water 260
48.1.3.4 Reduction of Other Heterofunctionalities 268
48.1.3.4.1 Method 1: Desulfurization of Thiols and Sulfides 268
48.1.3.4.1.1 Variation 1: Using Raney Nickel 268
48.1.3.4.1.2 Variation 2: Using Dissolving Metals and Amalgams 271
48.1.3.4.1.3 Variation 3: Using Nickel, Cobalt, Iron, or Copper Compounds and Metal Hydrides 271
48.1.3.4.1.4 Variation 4: Using Free-Radical Reagents 272
48.1.3.4.2 Method 2: Reduction of Sulfoxides and Sulfones 274
48.1.3.4.2.1 Variation 1: Using Raney Nickel 274
48.1.3.4.2.2 Variation 2: Using Dissolving Metals and Amalgams 274
48.1.3.4.2.3 Variation 3: Miscellaneous Reactions 275
48.1.3.4.3 Method 3: Reduction of Selenium Compounds 275
48.1.3.4.3.1 Variation 1: Using Raney Nickel or Nickel Boride 275
48.1.3.4.3.2 Variation 2: Using Dissolving Metals 276
48.1.3.4.3.3 Variation 3: Using Tributyltin Hydride and Related Reagents 276
48.1.3.4.3.4 Variation 4: Miscellaneous Reactions 276
48.1.3.4.4 Method 4: Replacement of an Amino Group by Hydrogen (Deamination) 277
48.1.3.4.4.1 Variation 1: Deamination of Amines via Arylsulfonyl Derivatives 277
48.1.3.4.4.2 Variation 2: Deamination via Diazo Derivatives 279
48.1.3.4.4.3 Variation 3: Deamination via Free-Radical Reactions 280
48.1.3.4.4.4 Variation 4: Miscellaneous Reactions 280
48.1.3.4.5 Method 5: Replacement of a Nitro Group by Hydrogen (Denitration) 281
48.1.3.4.5.1 Variation 1: Free-Radical Denitration Reactions 281
48.1.3.4.5.2 Variation 2: Miscellaneous Reactions 282
48.1.3.4.6 Method 6: Reduction of a Cyano Group 283
48.1.3.4.6.1 Variation 1: Catalytic Hydrogenation 283
48.1.3.4.6.2 Variation 2: Miscellaneous Reactions 284
48.1.3.4.7 Method 7: Replacement of an Isocyano Group by Hydrogen 284
48.1.3.5 Reduction of Alkynes 288
48.1.3.5.1 Method 1: Reduction Using Heterogeneous Catalysis 288
48.1.3.5.1.1 Variation 1: Using Classical Conditions 288
48.1.3.5.1.2 Variation 2: Using Microwave Irradiation 289
48.1.3.5.1.3 Variation 3: Using Hydrogen-Transfer Conditions 290
48.1.3.5.2 Method 2: Reduction Using Homogeneous Catalysis 291
48.1.3.5.3 Method 3: Miscellaneous Reduction Methods 292
48.1.3.5.3.1 Variation 1: Ionic Hydrogenation 292
48.1.3.5.3.2 Variation 2: Hydrogenation Using a Nickel--Lithium System 293
48.1.3.5.4 Method 4: Hydrogenation in the Presence of Other Reducible Groups 294
48.1.3.5.5 Method 5: Reduction of Polyynes 296
48.1.3.6 Reduction of Alkenes 298
48.1.3.6.1 Reduction by Heterogeneous Catalysis 298
48.1.3.6.1.1 Reduction of Alkenes (Monoenes) 298
48.1.3.6.1.1.1 Effect of Apparatus upon Reduction Using Hydrogen Gas 299
48.1.3.6.1.1.1.1 Method 1: Synthesis Using Classical Reactors 299
48.1.3.6.1.1.1.1.1 Variation 1: Under Atmospheric Pressure 300
48.1.3.6.1.1.1.1.2 Variation 2: With Control of Hydrogen Consumption 300
48.1.3.6.1.1.1.1.3 Variation 3: Using a Pressure Reactor 301
48.1.3.6.1.1.1.1.4 Variation 4: Using a Continuous Reactor 301
48.1.3.6.1.1.1.2 Method 2: Synthesis Using the H-Cube Reactor 303
48.1.3.6.1.1.2 Effect of Reaction Conditions upon Reduction Using Hydrogen Gas 304
48.1.3.6.1.1.2.1 Method 1: Synthesis under Classical Conditions 308
48.1.3.6.1.1.2.1.1 Variation 1: More Recent Developments 309
48.1.3.6.1.1.2.2 Method 2: Synthesis Using Ultrasound 311
48.1.3.6.1.1.3 Effect of Catalyst upon Reduction Using Hydrogen Gas 312
48.1.3.6.1.1.3.1 Method 1: Synthesis Using Cobalt Catalysts 313
48.1.3.6.1.1.3.2 Method 2: Synthesis Using Copper Catalysts 314
48.1.3.6.1.1.3.3 Method 3: Synthesis Using Iron Catalysts 314
48.1.3.6.1.1.3.4 Method 4: Synthesis Using Nickel Catalysts 315
48.1.3.6.1.1.3.4.1 Variation 1: Using Reduced Nickel 315
48.1.3.6.1.1.3.4.2 Variation 2: Using Nickel from Nickel Formate 315
48.1.3.6.1.1.3.4.3 Variation 3: Using Raney Nickel 316
48.1.3.6.1.1.3.4.4 Variation 4: Using Urushibara Nickel 319
48.1.3.6.1.1.3.4.5 Variation 5: Using Nickel Boride 320
48.1.3.6.1.1.3.4.6 Variation 6: Using Nickel Nanoparticles 322
48.1.3.6.1.1.3.5 Method 5: Synthesis Using Palladium Catalysts 323
48.1.3.6.1.1.3.6 Method 6: Synthesis Using Platinum Catalysts 329
48.1.3.6.1.1.3.7 Method 7: Synthesis Using Miscellaneous Catalysts 332
48.1.3.6.1.1.4 Effect of Substrate Structure upon Reduction Using Hydrogen Gas 334
48.1.3.6.1.1.4.1 Method 1: Reduction of Monosubstituted Alkenes 335
48.1.3.6.1.1.4.2 Method 2: Reduction of Disubstituted Alkenes 335
48.1.3.6.1.1.4.3 Method 3: Reduction of Trisubstituted Alkenes 336
48.1.3.6.1.1.4.4 Method 4: Reduction of Tetrasubstituted Alkenes 337
48.1.3.6.1.1.4.5 Method 5: Hydrogenation of Alkenes in the Presence of Other Functional Groups 338
48.1.3.6.1.1.4.5.1 Variation 1: Selective Hydrogenation in the Presence of Oxygen or Nitrogen Protective Groups 338
48.1.3.6.1.1.4.5.2 Variation 2: Selective Hydrogenation in the Presence of a Carbonyl Group 341
48.1.3.6.1.1.4.5.3 Variation 3: Selective Hydrogenation in the Presence of a Halogen 342
48.1.3.6.1.1.4.5.4 Variation 4: Selective Hydrogenation in the Presence of a Cyclopropyl Group 343
48.1.3.6.1.1.4.5.5 Variation 5: Selective Hydrogenation in the Presence of an Allylic C--O Bond 344
48.1.3.6.1.1.4.5.6 Variation 6: Selective Hydrogenation in the Presence of an Aromatic Ring 344
48.1.3.6.1.1.4.5.7 Variation 7: Selective Hydrogenation in the Presence of a Cyano Group 345
48.1.3.6.1.1.4.6 Method 6: Stereoselective Synthesis of Alkanes 346
48.1.3.6.1.1.4.6.1 Variation 1: Hydrogenation of Sterically Hindered Alkenes 348
48.1.3.6.1.1.4.6.2 Variation 2: Hydrogenation of Alkenes with Polar Groups 349
48.1.3.6.1.1.5 Synthesis Using Hydrogen Transfer 350
48.1.3.6.1.1.5.1 Method 1: Catalytic Transfer Hydrogenation 351
48.1.3.6.1.1.5.2 Method 2: Catalytic Transfer Hydrogenation in the Presence of a Lewis Acid 353
48.1.3.6.1.1.5.3 Method 3: Catalytic Transfer Hydrogenation under Microwave Irradiation 353
48.1.3.6.1.1.5.4 Method 4: Catalytic Transfer Hydrogenation in an Ionic Liquid 354
48.1.3.6.1.2 Reduction of Dienes and Polyenes 355
48.1.3.6.1.2.1 Method 1: Reduction of Dienes 355
48.1.3.6.1.2.1.1 Variation 1: Of Hindered Diene Systems 356
48.1.3.6.1.2.2 Method 2: Reduction of Polyenes 356
48.1.3.6.2 Reduction by Homogeneous Catalysis or Biocatalysis 364
48.1.3.6.2.1 Method 1: Hydrogenation 365
48.1.3.6.2.1.1 Variation 1: Of Dienes 365
48.1.3.6.2.1.2 Variation 2: Of Aryl-Substituted Alkenes 367
48.1.3.6.2.1.3 Variation 3: Of Alkylated Alkenes 370
48.1.3.6.2.2 Method 2: Transfer Hydrogenation 373
48.1.3.6.2.2.1 Variation 1: Using Formic Acid 373
48.1.3.6.2.2.2 Variation 2: Using an Alcohol 374
48.1.3.6.2.2.3 Variation 3: Using Borane--Dimethylamine Complex 375
48.1.3.6.2.3 Method 3: Reduction of a,ß-Unsaturated Carboxylic Acid Derivatives by Biocatalysis 375
48.1.3.6.3 Reduction by Noncatalytic Methods 382
48.1.3.6.3.1 Method 1: Reduction of Alkenes or Dienes with Diimide 382
48.1.3.6.3.1.1 Variation 1: Anaerobic/Aerobic Hydrogenation 388
48.1.3.6.3.1.2 Variation 2: On a Solid Support 389
48.1.3.6.3.2 Method 2: Hydrogenation by Metals or Dissolving Metals 391
48.1.3.6.3.2.1 Variation 1: Using Sodium/Hexamethylphosphoric Triamide/tert-Butyl Alcohol 391
48.1.3.6.3.2.2 Variation 2: Using Alkali Metals in Solvents 392
48.1.3.6.3.3 Method 3: Reduction with Samarium(II) Iodide 394
48.1.3.6.3.4 Method 4: Hydroboration--Protonolysis, and Reduction of Organoboranes 395
48.1.3.6.3.4.1 Variation 1: Hydroboration--Protonolysis 396
48.1.3.6.3.4.2 Variation 2: Reduction of B-Alkyl Catecholboranes 398
48.1.3.6.3.5 Method 5: Hydrozirconation--Protonolysis 400
48.1.3.6.3.5.1 Variation 1: Protonolysis Using Schwartz's Reagent 400
48.1.3.6.3.5.2 Variation 2: Hydrometalation--Protonolysis 403
48.1.3.6.3.6 Method 6: Ionic Hydrogenation 405
48.1.3.6.3.6.1 Variation 1: Via Carbocations 405
48.1.3.6.3.6.2 Variation 2: Via Cation Radicals 407
48.1.3.6.3.7 Method 7: Hydrogenation with Metal Hydrides--Metal Salts 409
48.1.3.6.3.7.1 Variation 1: Using Lithium Aluminum Hydride--Metal Salts 409
48.1.3.6.3.7.2 Variation 2: Using Sodium Borohydride--Metal Salts 410
48.1.3.6.3.7.3 Variation 3: Using Metal Hydrides--Metal Alkoxides or Metal Salts 411
48.1.4 Synthesis by Reduction of Alkenes via Intermolecular C--C Bond Formation 416
48.1.4.1 Additions of Carbon Electrophiles 417
48.1.4.1.1 Method 1: Hydroalkylation of Alkenes with Haloalkanes and Similar Electrophilic Alkylating Reagents 417
48.1.4.1.2 Method 2: Hydroalkylation of Alkenes with Alkyl Chloroformates and Ethylaluminum Sesquichloride 423
48.1.4.1.3 Method 3: Hydroalkylation of Alkenes with Alkanes in the Presence of Acids 425
48.1.4.2 Additions of Carbon Nucleophiles 427
48.1.4.2.1 Method 1: Carbolithiation and Hydrolysis 428
48.1.4.2.2 Method 2: Carbomagnesiation and Hydrolysis 432
48.1.4.2.2.1 Variation 1: Uncatalyzed Carbomagnesiation 432
48.1.4.2.2.2 Variation 2: Catalyzed Carbomagnesiation 433
48.1.4.2.2.3 Variation 3: Stereoselective Carbomagnesiation 435
48.1.4.2.3 Method 3: Carbozincation and Hydrolysis 436
48.1.4.2.3.1 Variation 1: Uncatalyzed Carbozincation 437
48.1.4.2.3.2 Variation 2: Catalyzed Carbozincation 438
48.1.4.2.4 Method 4: Carbocupration and Hydrolysis 439
48.1.4.2.5 Method 5: Carboalumination and Hydrolysis 440
48.1.4.2.5.1 Variation 1: Uncatalyzed Carboalumination 440
48.1.4.2.5.2 Variation 2: Catalyzed Carboalumination 441
48.1.4.2.5.3 Variation 3: Enantioselective Carboalumination 444
48.1.4.2.5.4 Variation 4: Enantioselective Carboalumination in Target-Oriented Natural Product Synthesis 448
48.1.4.2.6 Method 6: Carbotitanation and Hydrolysis 451
48.1.4.2.7 Method 7: Carbozirconation and Hydrolysis 452
48.1.4.2.8 Method 8: Other Carbometalation Processes 453
48.1.4.3 Additions of Radicals 456
48.1.4.3.1 Method 1: Additions of Alkanes to Alkenes 456
48.1.5 Synthesis by Reduction with C--C Bond Cleavage 462
48.1.5.1 Alkanes by Carbon Monoxide Extrusion from Aldehydes 463
48.1.5.1.1 Method 1: Decarbonylation in the Presence of Rhodium Complexes 463
48.1.5.1.2 Method 2: Decarbonylation in the Presence of Other Group 8--10 Metal Complexes 465
48.1.5.1.3 Method 3: Light-Induced Decarbonylation 466
48.1.5.1.4 Method 4: Functional Decarbonylation via Homolytically Induced Decomposition of Unsaturated Peroxyacetals 467
48.1.5.2 Alkanes by Base-Induced Cleavage of Ketones 468
48.1.5.2.1 Method 1: Synthesis by the Haller--Bauer Reaction 468
48.1.5.3 Alkanes from Carboxylic Acid Derivatives 469
48.1.5.3.1 Method 1: Synthesis from Acid Chlorides 469
48.1.5.3.2 Method 2: Synthesis from Esters 470
48.1.5.3.3 Method 3: Synthesis from Thioesters 470
48.1.5.3.4 Method 4: Synthesis from Selenoesters 471
48.1.5.4 Alkanes from Carboxylic Acid Derivatives by Decarboxylation 473
48.1.5.4.1 Method 1: Synthesis from Peroxy Esters 473
48.1.5.4.2 Method 2: Synthesis from Acyl Derivatives of Hydroxamic Acids 474
48.1.5.4.3 Method 3: Synthesis from Acyl Derivatives of Thiohydroxamic Acids 475
48.1.5.5 Alkanes from Alkanecarbonitriles 477
48.1.5.5.1 Method 1: Reduction with Lithium or Sodium in Ammonia 477
48.1.5.5.2 Method 2: Reduction with Potassium Metal 478
48.1.5.5.3 Method 3: Reductive Decyanation Using Alkyllithium Reagents 479
48.1.6 Synthesis from Other Alkanes 482
48.1.6.1 Bond Cleavage Reactions 482
48.1.6.1.1 Method 1: Ring Opening of Small Carbon Rings 482
48.1.6.1.1.1 Variation 1: Catalytic Hydrogenolysis 482
48.1.6.1.1.2 Variation 2: Reductive Cleavage by Alkali Metals 486
48.1.6.1.2 Method 2: Demethylation of Alkanes 488
48.1.6.2 Dehydrodimerization Reactions 492
48.1.6.2.1 Method 1: Dehydrodimerization of Alkanes 492
48.1.6.3 Isomerization Reactions 496
48.1.6.3.1 Method 1: Skeletal Isomerization of Alkanes 496
48.2 Product Class 2: Cyclopropanes 500
48.2.1 Synthesis of Product Class 2 502
48.2.1.1 Method 1: Synthesis by Cyclization Reactions 502
48.2.1.1.1 Variation 1: Intramolecular ß-C--H Insertion of a Carbene 502
48.2.1.1.2 Variation 2: Radical Insertion into a C--H Bond 504
48.2.1.1.3 Variation 3: Radical Insertion into a C--C Bond 506
48.2.1.1.4 Variation 4: 1,5-Addition and Cycloaddition Reactions of Norbornadiene 507
48.2.1.2 Method 2: Synthesis by Cyclizing Elimination Reactions from a C3 Building Block 512
48.2.1.2.1 Variation 1: 1,3-Elimination of Two Heteroatoms 512
48.2.1.2.2 Variation 2: 1,3-Elimination of HX (X = Heteroatom or Heteroatom-Containing Functional Group) 518
48.2.1.2.3 Variation 3: .-Elimination of Group 14 Elements in a Carbocationic Species 521
48.2.1.3 Method 3: Synthesis by Ring-Contraction Reactions 523
48.2.1.3.1 Variation 1: Ring-Contracting Elimination of Nitrogen from 4,5-Dihydro-3H-pyrazoles 523
48.2.1.3.2 Variation 2: Ring-Contracting Elimination of One or Two C==O Units from Cyclobutanones or Cyclopentanediones 527
48.2.1.4 Method 4: Synthesis by Cycloaddition Reactions 529
48.2.1.4.1 Variation 1: Cyclopropanation with Photochemically or Thermally Generated Carbenes 529
48.2.1.4.2 Variation 2: Cyclopropanation with Catalytically Generated Methylene 532
48.2.1.4.3 Variation 3: Cyclopropanation with Methylenoids (Simmons--Smith Cyclopropanation) 539
48.2.1.4.4 Variation 4: Cyclopropanation with Dihalocarbenes Followed by Reductive Dehalogenation 550
48.2.1.4.5 Variation 5: Cyclopropanation with Arylcarbenes (Arylcarbenoids) 563
48.2.1.4.6 Variation 6: Cycloaddition Reactions of Cyclopropenes 573
48.2.1.4.7 Variation 7: Dimerization and Oligomerization Reactions of Cyclopropenes 581
48.2.1.5 Method 5: Synthesis by Addition to C==C Bonds of Cyclopropenes with Retention of the Cyclopropane Ring 584
48.2.1.5.1 Variation 1: Hydrogenation 584
48.2.1.5.2 Variation 2: Addition of Organometallic Species 587
48.2.1.6 Method 6: Synthesis by Rearrangement of the Carbon Skeleton 588
48.2.1.6.1 Variation 1: Homoallyl or Cyclobutyl Rearrangements to a Cyclopropylmethyl Group 588
48.2.1.6.2 Variation 2: Rearrangements in Oligoene Systems 590
48.2.1.6.3 Variation 3: Miscellaneous Rearrangements 595
48.2.1.7 Method 7: Synthesis by Transformation of Other Cyclopropanes 596
48.2.1.7.1 Variation 1: Reactions without Ring Opening of the Cyclopropane Moieties 596
48.2.1.7.2 Variation 2: Reactions with Ring Opening of the Cyclopropane Moieties 597
48.2.1.8 Methods 8: Miscellaneous Reactions 599
48.2.1.8.1 Variation 1: Reductive Cyclopropanation of a Carbonyl Group 599
48.2.1.8.2 Variation 2: Cycloaddition and Insertion Reactions of Carbenoids 601
48.2.1.8.3 Variation 3: Oligo- and Polymerization Reactions 607
48.2.1.8.4 Variation 4: Cyclopropanation with Sulfur Ylides 609
48.2.2 Applications of Product Class 2 in Organic Synthesis 611
48.3 Product Class 3: Cyclobutanes 638
48.3.1 Synthesis of Product Class 3 638
48.3.1.1 Method 1: Ring-Opening Reactions 638
48.3.1.1.1 Variation 1: Opening of the Central Bond in Bicyclo[1.1.0]butanes 638
48.3.1.1.2 Variation 2: Ring Opening of One Bond in [1.1.n]Propellanes 639
48.3.1.2 Method 2: 1,4-Cycloelimination of Two Heteroatoms from 1,4-Dihalides or Similar Difunctional Compounds 642
48.3.1.3 Method 3: Ring-Contraction Reactions 643
48.3.1.3.1 Variation 1: Elimination of Nitrogen from Six-Membered Heterocycles 643
48.3.1.3.2 Variation 2: Decarbonylation of Cyclopentanones 646
48.3.1.3.3 Variation 3: Elimination of a Metal Atom from Metallacyclopentanes 647
48.3.1.3.4 Variation 4: Rearrangement of Bicyclo[4.1.0]hept-2-ene Derivatives 649
48.3.1.4 Method 4: [2 + 2]-Cycloaddition Reactions 650
48.3.1.4.1 Variation 1: Cycloaddition Reactions of Cyclopropenes 651
48.3.1.4.2 Variation 2: Cycloaddition Reactions of Methylenecyclopropanes 651
48.3.1.4.3 Variation 3: Cycloaddition Reactions of Cyclobutene 653
48.3.1.4.4 Variation 4: Miscellaneous Intramolecular Cycloadditions 653
48.3.1.5 Method 5: Synthesis with Retention of the Cyclobutane Ring 654
48.3.1.5.1 Variation 1: Hydrogenation of Unsaturated Hydrocarbons 654
48.3.1.5.2 Variation 2: Hydrogenation of 1-(Organosulfanyl)cyclobutenes 657
48.3.1.6 Method 6: Rearrangement of the Carbon Framework 658
48.3.1.6.1 Variation 1: Rearrangement of Cyclopropylmethyl and Homoallyl Derivatives 658
48.3.1.6.2 Variation 2: Rearrangement of Compounds Containing Hexa-1,5-dienyl or Dicyclopropyl Fragments 659
48.3.1.7 Method 7: Transformation of Other Cyclobutanes 661
48.3.2 Applications of Product Class 3 in Organic Synthesis 663
48.4 Product Class 4: Five-Membered and Larger-Ring Cycloalkanes 670
48.4.1 Synthesis of Product Class 4 670
48.4.1.1 Method 1: Synthesis by Reduction without C--C Bond Cleavage 670
48.4.1.1.1 Variation 1: Of Cycloalkenes 670
48.4.1.1.2 Variation 2: Of Cyclodienes 673
48.4.1.1.3 Variation 3: Of Substituted Benzenes 674
48.4.1.2 Method 2: Synthesis by Radical Cyclization 675
48.4.1.2.1 Variation 1: Formation of Cyclopentanes and Cyclohexanes 675
48.4.1.2.2 Variation 2: Formation of Medium-Sized Rings 686
48.4.1.2.3 Variation 3: Formation of Large-Sized Rings 687
48.4.1.3 Method 3: Synthesis by Polar Cyclization 688
48.4.1.3.1 Variation 1: Nucleophilic Substitution 688
48.4.1.3.2 Variation 2: Nucleophilic Addition 691
48.4.1.4 Method 4: Synthesis by Metal-Promoted Cyclization 696
48.4.1.4.1 Variation 1: Of Dienes 696
48.4.1.4.2 Variation 2: Of Enynes 698
48.4.1.4.3 Variation 3: Of Diynes 702
48.4.1.4.4 Variation 4: Of Trimethylenemethanes 704
48.4.1.4.5 Variation 5: Of Unsaturated Diazo Compounds 706
48.4.1.5 Method 5: Synthesis by Ring Expansion 708
48.4.1.6 Method 6: Synthesis by Ring Contraction 710
48.5 Product Class 5: Hydrocarbon Polymers 718
48.5.1 Product Subclass 1: Polyethenes 719
48.5.1.1 Synthesis of Product Subclass 1 719
48.5.1.1.1 Method 1: Synthesis by Decomposition of Diazomethane 719
48.5.1.1.2 Method 2: Synthesis by Radical Polymerization 720
48.5.1.1.3 Method 3: Synthesis by Coordination Catalysis 722
48.5.1.1.3.1 Variation 1: Using Early Ziegler--Natta Catalysts: Titanium Halides--Alkylaluminum Complexes 722
48.5.1.1.3.2 Variation 2: Using Third-Generation Supported Ziegler--Natta Catalysts 724
48.5.1.1.3.3 Variation 3: Using Phillips Catalysts 724
48.5.1.1.3.4 Variation 4: Using Homogeneous (Single-Site) Catalysis with Metallocenes Activated by Methylaluminoxane 725
48.5.1.1.3.5 Variation 5: Using Homogeneous (Single-Site) Catalysis with Metallocenes Activated by Fluorinated Boranes or Borates 728
48.5.1.1.3.6 Variation 6: Using Homogeneous (Single-Site) Catalysis with Late-Transition-Metal Catalysts 728
48.5.2 Product Subclass 2: Polyethene Copolymers 731
48.5.2.1 Synthesis of Product Subclass 2 731
48.5.2.1.1 Method 1: Copolymerization of Ethene with Alk-1-enes 731
48.5.2.1.1.1 Variation 1: Using Ziegler--Natta Catalysts 732
48.5.2.1.1.2 Variation 2: Of Short- to Medium-Chain Alk-1-enes Using Single-Site Catalysts 732
48.5.2.1.1.3 Variation 3: Of Medium- to Long-Chain Alk-1-enes Using Single-Site Catalysts 734
48.5.2.1.2 Method 2: Synthesis of Ethene--Propene Rubbers 735
48.5.2.1.2.1 Variation 1: Using Vanadium-Based Catalysts 735
48.5.2.1.2.2 Variation 2: Using Metallocene-Based Catalysts 736
48.5.2.1.3 Method 3: Copolymerization of Ethene with Cycloalkenes 736
48.5.2.1.3.1 Variation 1: Using Metallocene-Based Catalysts 737
48.5.2.1.3.2 Variation 2: Using Palladium-Based Catalysts 738
48.5.3 Product Subclass 3: Polypropenes 739
48.5.3.1 Synthesis of Product Subclass 3 741
48.5.3.1.1 Method 1: Synthesis of Isotactic Polypropenes Using Ziegler--Natta Catalysts 741
48.5.3.1.1.1 Variation 1: Using Titanium Chlorides--Alkylaluminum Reagents 741
48.5.3.1.1.2 Variation 2: Using a Supported Titanium Chloride Reagent 743
48.5.3.1.1.3 Variation 3: With Addition of Donors 744
48.5.3.1.2 Method 2: Synthesis Using Homogeneous Catalysts 745
48.5.3.1.2.1 Variation 1: Of Isotactic Polypropenes 745
48.5.3.1.2.2 Variation 2: Of Syndiotactic Polypropenes 748
48.5.3.1.2.3 Variation 3: Of Atactic Polypropenes 749
48.5.4 Product Subclass 4: Other Hydrocarbon Polymers 750
48.5.4.1 Synthesis of Product Subclass 4 751
48.5.4.1.1 Method 1: Synthesis of Polybutenes 751
48.5.4.1.2 Method 2: Synthesis of Poly(isobutenes) 751
48.5.4.1.3 Method 3: Synthesis of Poly(methyl-substituted alk-1-enes) 753
48.5.4.1.4 Method 4: Synthesis of Poly(cycloalkenes) 753
Keyword Index 762
Author Index 806
Abbreviations 825
Erscheint lt. Verlag | 14.5.2014 |
---|---|
Verlagsort | Stuttgart |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie ► Organische Chemie |
Technik | |
Schlagworte | Alkanes • carbon • CAR BON • Chemie • Chemische Synthese • chemistry of organic compound • chemistry organic reaction • chemistry reference work • C HEMISTRY REFERENCE WORK • chemistry synthetic methods • compound functional group • compound organic synthesis • compounds with all-carbon functions • Hydrogen • Mechanism • methods in organic synthesis • methods peptide synthesis • Organic Chemistry • organic chemistry functional groups • organic chemistry reactions • organic chemistry review • organic chemistry synthesis • ORGANIC CHEM ISTRY SYNTHESIS • organic method • organic reaction • organic reaction mechanism • ORGANI C REACTION MECHANISM • Organic Syntheses • organic synthesis • organic synthesis reference work • Organisch-chemische Synthese • Organische Chemie • Peptide synthesis • Practical • practical organic chemistry • Reactions • reference work • Review • review organic synthesis • review synthetic methods • REVIEW SYNTHE TIC METHODS • saturated hydrocarbon polymers • Synthese • Synthetic chemistry • Synthetic Methods • Synthetic Organic Chemistry • synthetic transformation |
ISBN-10 | 3-13-178481-4 / 3131784814 |
ISBN-13 | 978-3-13-178481-0 / 9783131784810 |
Haben Sie eine Frage zum Produkt? |
Größe: 23,5 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich