Science of Synthesis: Houben-Weyl Methods of Molecular Transformations Vol. 45b (eBook)

Aromatic Ring Assemblies, Polycyclic Aromatic Hydrocarbons, and Conjugated Polyenes

Jay S. Siegel, Yoshito Tobe (Herausgeber)

eBook Download: EPUB
2014 | 1. Auflage
994 Seiten
Thieme (Verlag)
978-3-13-178441-4 (ISBN)

Lese- und Medienproben

Science of Synthesis: Houben-Weyl Methods of Molecular Transformations  Vol. 45b -
Systemvoraussetzungen
2.589,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
<!DOCTYPE HTML PUBLIC '-//W3C//DTD HTML 4.0 Transitional//EN'> <HTML><HEAD> <META content='text/html; charset=unicode' http-equiv=Content-Type> <META name=GENERATOR content='MSHTML 8.00.7600.16588'></HEAD> <BODY> <P><EM>Science of Synthesis: Houben-Weyl Methods of Molecular Transformations</EM> is the entirely new edition of the acclaimed reference series Houben-Weyl, the standard synthetic chemistry resource since 1909. This new edition is published in English and will comprise 48 volumes published between the years 2000 and 2008.</P> <P><EM>Science of Synthesis</EM> is a quality reference work developed by a highly esteemed editorial board to provide a comprehensive and critical selection of reliable organic and organometallic synthetic methods. This unique resource is designed to be the first point of reference when searching for a synthesis strategy.</P> <UL><LI>Contains the expertise of presently 400 leading chemists worldwide <LI>Critically evaluates the preparative applicability and significance of the synthetic methods <LI>Discusses relevant background information and provides detailed experimental procedures</LI></UL> <P>For full information on the <EM>Science of Synthesis</EM> series, visit the <A href='http://www.science-of-synthesis.com/'>Science of Synthesis Homepage</A></P></BODY></HTML>

Science of Synthesis – Volume 45b: Aromatic Ring Assemblies, Polycyclic Aromatic Hydrocarbons, and Conjugated Polyenes 1
Title page 3
Imprint 5
Preface 6
Overview 8
Table of Contents 10
45.13 Product Class 13: Biaryls 40
45.13.1 Synthesis of Product Class 13 40
45.13.1.1 Synthesis Using Copper Catalysis 40
45.13.1.1.1 Method 1: The Ullmann Reaction 40
45.13.1.1.2 Method 2: Cross-Coupling Reactions 42
45.13.1.1.2.1 Variation 1: Using Boronic Acids 42
45.13.1.1.2.2 Variation 2: Using Organotin Reagents 43
45.13.1.2 The Suzuki Cross-Coupling Reaction 44
45.13.1.2.1 Method 1: Aryl Iodides in Suzuki Cross-Coupling Reactions 45
45.13.1.2.2 Method 2: Aryl Bromides in Suzuki Cross-Coupling Reactions 48
45.13.1.2.3 Method 3: Aryl Chlorides in Suzuki Cross-Coupling Reactions 55
45.13.1.2.4 Method 4: Aryl 4-Toluenesulfonates and Trifluoromethanesulfonates in Suzuki Cross-Coupling Reactions 60
45.13.1.2.5 Method 5: Diazonium Salts in Suzuki Cross-Coupling Reactions 64
45.13.1.2.6 Method 6: Synthesis of Hindered Biaryls Using the Suzuki Cross-Coupling Reaction 65
45.13.1.2.7 Method 7: Synthesis of Oligoaromatics Using the Suzuki Cross-Coupling Reaction 68
45.13.1.3 The Stille Cross-Coupling Reaction 70
45.13.1.3.1 Method 1: Aryl Iodides in Stille Cross-Coupling Reactions 71
45.13.1.3.2 Method 2: Aryl Bromides in Stille Cross-Coupling Reactions 72
45.13.1.3.3 Method 3: Aryl Chlorides in Stille Cross-Coupling Reactions 73
45.13.1.3.4 Method 4: Aryl Trifluoromethanesulfonates in Stille Cross-Coupling Reactions 74
45.13.1.3.5 Method 5: Synthesis of Hindered Biaryls Using the Stille Cross-Coupling Reaction 75
45.13.1.4 The Negishi Cross-Coupling Reaction 77
45.13.1.4.1 Method 1: Aryl Iodides in Negishi Cross-Coupling Reactions 77
45.13.1.4.2 Method 2: Aryl Bromides in Negishi Cross-Coupling Reactions 79
45.13.1.4.3 Method 3: Aryl Chlorides in Negishi Cross-Coupling Reactions 80
45.13.1.4.4 Method 4: Aryl Trifluoromethanesulfonates in Negishi Cross-Coupling Reactions 81
45.13.1.4.5 Method 5: Synthesis of Hindered Biaryls Using the Negishi Cross-Coupling Reaction 82
45.13.1.5 The Hiyama Cross-Coupling Reaction 84
45.13.1.5.1 Method 1: Aryl Iodides in Hiyama Cross-Coupling Reactions 84
45.13.1.5.2 Method 2: Aryl Bromides in Hiyama Cross-Coupling Reactions 87
45.13.1.5.3 Method 3: Aryl Chlorides in Hiyama Cross-Coupling Reactions 89
45.13.1.5.4 Method 4: Aryl Trifluoromethanesulfonates in Hiyama Cross-Coupling Reactions 91
45.13.1.5.5 Method 5: Synthesis of Oligoaromatics Using the Hiyama Cross-Coupling Reaction 92
45.13.1.6 The Kumada--Corriu Cross-Coupling Reaction 92
45.13.1.6.1 Method 1: Aryl Iodides in Kumada--Corriu Cross-Coupling Reactions 92
45.13.1.6.2 Method 2: Aryl Bromides in Kumada--Corriu Cross-Coupling Reactions 94
45.13.1.6.3 Method 3: Aryl Chlorides in Kumada--Corriu Cross-Coupling Reactions 95
45.13.1.6.4 Method 4: Aryl Trifluoromethanesulfonates and Arenesulfonates in Kumada--Corriu Cross-Coupling Reactions 96
45.13.1.6.5 Method 5: Synthesis of Hindered Biaryls Using the Kumada--Corriu Cross-Coupling Reaction 98
45.13.1.6.6 Method 6: Synthesis of Oligoaromatics Using the Kumada--Corriu Coupling Reaction 98
45.13.1.7 Direct Arylation 99
45.13.1.7.1 Method 1: Intramolecular Direct Arylation 99
45.13.1.7.2 Method 2: Intermolecular Direct Arylation 105
45.13.1.7.2.1 Variation 1: In the Presence of Directing Groups 105
45.13.1.7.2.2 Variation 2: Without Directing Groups 110
45.13.1.7.3 Method 3: Palladium-Catalyzed Domino/Cascade Reactions Involving Direct Arylation 111
45.14 Product Class 14: Arylalkanes 120
45.14.1 Synthesis of Product Class 14 120
45.14.1.1 Method 1: Friedel--Crafts Alkylation 120
45.14.1.1.1 Variation 1: Using Alkyl Halides 120
45.14.1.1.2 Variation 2: Using Alkenes 122
45.14.1.1.3 Variation 3: Using Alcohols 125
45.14.1.1.4 Variation 4: Using Esters 126
45.14.1.1.5 Variation 5: Asymmetric Friedel--Crafts Alkylation 127
45.14.1.2 Method 2: Alkylation of Aromatic Ketones with Alkenes by C--H Activation 129
45.14.1.3 Method 3: Alkylation via Transition-Metal-Catalyzed Cross-Coupling Reactions with Alkyl Electrophiles 129
45.14.1.3.1 Variation 1: Kumada Cross-Coupling Reaction 129
45.14.1.3.2 Variation 2: Suzuki Cross-Coupling Reaction 131
45.14.1.3.3 Variation 3: Negishi Cross-Coupling Reaction 132
45.14.1.3.4 Variation 4: Stille Cross-Coupling Reaction 134
45.14.1.3.5 Variation 5: Hiyama Cross-Coupling Reaction 134
45.14.1.4 Method 4: Alkylation via Transition-Metal-Catalyzed Cross-Coupling Reactions with Alkyl Nucleophiles 136
45.14.1.4.1 Variation 1: Kumada Cross-Coupling Reaction 136
45.14.1.4.2 Variation 2: Suzuki Cross-Coupling Reaction 137
45.14.1.4.3 Variation 3: Negishi Cross-Coupling Reaction 140
45.14.1.4.4 Variation 4: Hiyama Cross-Coupling Reaction 142
45.15 Product Class 15: Poly(phenylenes) 146
45.15.1 Product Subclass 1: Linear Poly(phenylenes) 146
45.15.1.1 Synthesis of Product Subclass 1 147
45.15.1.1.1 Method 1: Kovacic Procedure 147
45.15.1.1.2 Method 2: Dehalogenative Polycondensation Reactions of Disubstituted Benzenes Using Nickel(0) Complexes 148
45.15.1.1.2.1 Variation 1: Using Bis(.4-cycloocta-1,5-diene)nickel(0) 149
45.15.1.1.2.2 Variation 2: Using a Nickel Complex as the Catalyst and Zinc as the Reducing Reagent 151
45.15.1.1.3 Method 3: Grignard Coupling Reactions 152
45.15.1.1.4 Method 4: Suzuki Coupling Reactions 154
45.15.1.1.4.1 Variation 1: AB-Type Approach 154
45.15.1.1.4.2 Variation 2: AA/BB-Type Approach 156
45.15.1.1.5 Method 5: Stille Coupling Reactions 157
45.15.1.1.6 Method 6: Reactions Utilizing Intermediate Polymers 159
45.15.1.1.6.1 Variation 1: Aromatization by Decarboxylation of Soluble Precursor Polymers 159
45.15.1.1.6.2 Variation 2: Decarboxylation of a Precursor with a Poly(p-phenylene) Backbone 161
45.15.1.1.7 Method 7: Diels--Alder Polycondensations 161
45.15.2 Product Subclass 2: Macrocyclic Poly(phenylenes) 163
45.15.2.1 Synthesis of Product Subclass 2 163
45.15.2.1.1 Method 1: Reductive Coupling Reactions 163
45.15.2.1.2 Method 2: Suzuki Coupling Reactions 164
45.15.3 Product Subclass 3: Dendritic Poly(phenylenes) 165
45.15.3.1 Synthesis of Product Subclass 3 165
45.15.3.1.1 Method 1: Suzuki Coupling Reactions 165
45.15.3.1.2 Method 2: Diels--Alder Cycloaddition Reactions 166
45.16 Product Class 16: Poly(p-phenylenevinylenes) 170
45.16.1 Product Subclass 1: Unsubstituted Poly(p-phenylenevinylenes) 170
45.16.1.1 Synthesis of Product Subclass 1 170
45.16.1.1.1 Method 1: Polymerization of Sulfonium Salts 171
45.16.1.1.2 Method 2: Polymerization of Dithiocarbonates 172
45.16.1.1.3 Method 3: Polymerization of Dithiocarbamates 172
45.16.1.1.4 Method 4: Polymerization of Sulfinyl Compounds 173
45.16.1.1.5 Method 5: Ring-Opening Metathesis Polymerization 174
45.16.2 Product Subclass 2: Substituted, Soluble Poly(p-phenylenevinylenes) 175
45.16.2.1 Synthesis of Product Subclass 2 175
45.16.2.1.1 Method 1: Polymerization of Sulfonium Salts 176
45.16.2.1.2 Method 2: The Gilch Method 176
45.16.2.1.3 Method 3: Polymerization of Dithiocarbamates 178
45.16.2.1.4 Method 4: Wittig Reactions 179
45.16.2.1.5 Method 5: Horner Reactions 180
45.16.2.1.6 Method 6: Heck Coupling 181
45.16.2.1.7 Method 7: Stille Coupling 182
45.16.2.1.8 Method 8: Acyclic Diene Metathesis Polymerization 182
45.16.2.1.9 Method 9: Ring-Opening Metathesis Polymerization 183
45.16.2.1.10 Method 10: Polymerization of (Dichloromethyl)aryls 184
45.16.2.1.11 Method 11: McMurry Reaction 185
45.16.2.1.12 Method 12: Knoevenagel Condensation 185
45.17 Product Class 17: Poly(xylylenes) 190
45.17.1 Product Subclass 1: Poly(p-xylylenes) 191
45.17.1.1 Synthesis of Product Subclass 1 191
45.17.1.1.1 Method 1: Wurtz--Fittig Dehalogenation of 1,4-Bis(halomethyl)arenes in the Presence of a Metal 191
45.17.1.1.2 Method 2: Friedel--Crafts Coupling of Benzene with 1,2-Dihaloethanes, or of (2-Haloethyl)benzenes 191
45.17.1.1.3 Method 3: Synthesis by Isomerization Polymerization of Diazo Compounds 192
45.17.1.1.4 Method 4: Reductive Coupling of Aromatic Dialdehydes 192
45.17.1.1.5 Method 5: Polyrecombination in the Presence of Peroxide 193
45.17.1.1.6 Method 6: Hofmann and Hofmann-Analogous Degradations 193
45.17.1.1.6.1 Variation 1: Of Trimethyl(4-methylbenzyl)ammonium Salts 193
45.17.1.1.6.2 Variation 2: Of Trimethyl[4-(trimethylsilylmethyl)benzyl]ammonium Halides 194
45.17.1.1.7 Method 7: Electrochemical Reduction of 1,4-Bis(halomethyl)benzenes 195
45.17.1.1.8 Method 8: Dehydrohalogenation with Base 197
45.17.1.1.8.1 Variation 1: Of 1-(Halomethyl)-4-methylarenes 197
45.17.1.1.8.2 Variation 2: Of 1,4-Bis(halomethyl)arenes 198
45.17.1.1.8.3 Variation 3: Of p-Xylylenebis(dialkylsulfonium) Dihalide Salts 200
45.17.1.1.8.4 Variation 4: Of 4-(Chloromethyl)benzyl Sulfoxides or Sulfones 201
45.17.1.1.9 Method 9: Chemical Vapor Deposition by Pyrolysis 202
45.17.1.1.9.1 Variation 1: Of p-Xylenes 202
45.17.1.1.9.2 Variation 2: Of Esters of 1,4-Phenylenedimethanols 203
45.17.1.1.9.3 Variation 3: Of 1-(Halomethyl)- or 1-(Dihalomethyl)-4-methylbenzenes, or 1,4-Bis(dihalomethyl)benzenes 204
45.17.1.1.9.4 Variation 4: Of Cyclophanes 205
45.17.1.1.9.5 Variation 5: Of a Spiro Compound 207
45.17.1.1.10 Method 10: Dehalogenation of 1,4-Bis(trihalomethyl)benzenes via Chemical Vapor Deposition by Pyrolysis with Metal Contact 207
45.17.2 Product Subclass 2: Poly(m-xylylenes) 208
45.17.2.1 Synthesis of Product Subclass 2 208
45.17.2.1.1 Method 1: Wurtz--Fittig Dehalogenation of 1,3-Bis(halomethyl)benzenes in the Presence of a Metal 208
45.17.2.1.2 Method 2: Reductive Coupling of Aromatic Dialdehydes 209
45.17.3 Product Subclass 3: Poly(o-xylylenes) 209
45.17.3.1 Synthesis of Product Subclass 3 209
45.17.3.1.1 Method 1: Wurtz--Fittig Dehalogenation of a 1,2-Bis(halomethyl)benzene in the Presence of a Metal 209
45.17.3.1.2 Method 2: Electrochemical Reduction of 1,2-Bis(halomethyl)benzenes 210
45.17.3.1.3 Method 3: Ring-Opening Reactions 210
45.17.3.1.3.1 Variation 1: Of Spiro Compounds 210
45.17.3.1.3.2 Variation 2: Of Benzocyclobutenes 211
45.18 Product Class 18: Polystyrenes 216
45.18.1 Product Subclass 1: Linear Polystyrenes 216
45.18.1.1 Synthesis of Product Subclass 1 216
45.18.1.1.1 Method 1: Conventional Radical Polymerization 217
45.18.1.1.1.1 Variation 1: Addition--Fragmentation Chain Transfer (AFCT) 218
45.18.1.1.2 Method 2: Controlled/Living Radical Polymerization (CLRP) 219
45.18.1.1.2.1 Variation 1: Nitroxide-Mediated Radical Polymerization (NMP) 220
45.18.1.1.2.2 Variation 2: Atom Transfer Radical Polymerization (ATRP) 221
45.18.1.1.2.3 Variation 3: Reversible Addition--Fragmentation Chain Transfer (RAFT) 222
45.18.1.1.2.4 Variation 4: Organotellurium-Mediated Living Radical Polymerization (TERP) 223
45.18.1.1.3 Method 3: Living Anionic Polymerization 223
45.18.1.1.4 Method 4: Living Cationic Polymerization 224
45.18.1.1.5 Method 5: Coordination Polymerization 225
45.18.1.1.5.1 Variation 1: Isotactic Polymerization 226
45.18.1.1.5.2 Variation 2: Syndiotactic Polymerization 226
45.18.1.1.6 Method 6: Modification of Substituents 227
45.18.1.1.6.1 Variation 1: Click Chemistry Approach 227
45.18.1.1.6.2 Variation 2: Miscellaneous Organic Functional Group Transformations 228
45.18.1.2 Applications of Product Subclass 1 in Organic Synthesis 229
45.18.1.2.1 Method 1: Soluble Polystyrene Supports Made by Controlled/Living Radical Polymerization 230
45.18.2 Product Subclass 2: Branched Polystyrenes 230
45.18.2.1 Synthesis of Product Subclass 2 230
45.18.2.1.1 Method 1: Alkoxyamine-Initiated Radical Polymerization 231
45.18.2.1.2 Method 2: Controlled/Living Radical Copolymerization with Macromonomers 232
45.18.3 Product Subclass 3: Cross-Linked Polystyrenes 232
45.18.3.1 Synthesis of Product Subclass 3 233
45.18.3.1.1 Method 1: Suspension Copolymerization of Styrene with Cross-Linking Monomers 233
45.19 Product Class 19: Naphthalenes, Anthracenes, 9H-Fluorenes, and Other Acenes 238
45.19.1 Product Subclass 1: Naphthalenes 239
45.19.1.1 Synthesis of Product Subclass 1 239
45.19.1.1.1 Synthesis by Ring-Closure Reactions 239
45.19.1.1.1.1 Method 1: Formation of Three C--C Bonds 240
45.19.1.1.1.1.1 Variation 1: Palladium-Catalyzed Cyclization of Alkynes and Alkenes 240
45.19.1.1.1.1.2 Variation 2: Palladium-Catalyzed Cyclization of Alkynes 240
45.19.1.1.1.1.3 Variation 3: Iridium-Catalyzed Cyclization 241
45.19.1.1.1.1.4 Variation 4: Copper-Catalyzed Cyclization of Organozirconium Compounds 241
45.19.1.1.1.1.5 Variation 5: Insertion of a Nickel--Benzyne Complex 242
45.19.1.1.1.2 Method 2: Formation of Two C--C Bonds with a C2 Unit 243
45.19.1.1.1.2.1 Variation 1: Titanium-Catalyzed Cyclization 243
45.19.1.1.1.2.2 Variation 2: Palladium-Catalyzed Cyclization of Organozirconium Compounds 243
45.19.1.1.1.2.3 Variation 3: Palladium-Catalyzed Cyclization of Vinyl and Aryl Iodides 244
45.19.1.1.1.2.4 Variation 4: Diels--Alder Reaction of o-Quinodimethanes 245
45.19.1.1.1.2.5 Variation 5: Diels--Alder Reaction of Organotungsten Compounds 246
45.19.1.1.1.2.6 Variation 6: Electrophilic Cyclization 246
45.19.1.1.1.2.7 Variation 7: Lewis Acid Catalyzed Cyclization 247
45.19.1.1.1.2.8 Variation 8: Cyclization of Phosphonium Salts with Enolates 248
45.19.1.1.1.3 Method 3: Formation of Two C--C Bonds with a C3 Unit 249
45.19.1.1.1.3.1 Variation 1: Cyclization with Enones 249
45.19.1.1.1.3.2 Variation 2: Cyclization with 3-Oxo Acetals 250
45.19.1.1.1.3.3 Variation 3: Cyclization with 3-Oxo Dithioacetals 250
45.19.1.1.1.3.4 Variation 4: Cyclization with Grignard Reagents 251
45.19.1.1.1.4 Method 4: Formation of Two C--C Bonds with a C4 Unit 252
45.19.1.1.1.4.1 Variation 1: Diels--Alder Reaction with Cyclopentadienones 253
45.19.1.1.1.4.2 Variation 2: Diels--Alder Reaction with Pyrroles 253
45.19.1.1.1.4.3 Variation 3: Diels--Alder Reaction with Furans 254
45.19.1.1.1.5 Method 5: Formation of One C--C Bond to a Benzene Ring 256
45.19.1.1.1.5.1 Variation 1: Friedel--Crafts Acylation 257
45.19.1.1.1.5.2 Variation 2: Friedel--Crafts Alkylation 257
45.19.1.1.1.5.3 Variation 3: Lewis Acid Catalyzed Rearrangement of Vinylidenecyclopropanes 258
45.19.1.1.1.5.4 Variation 4: Electrophilic Cyclization of Alkynes 259
45.19.1.1.1.5.5 Variation 5: Base-Catalyzed Cyclization of Enynes 259
45.19.1.1.1.5.6 Variation 6: Base-Catalyzed Rearrangement of Methylenetetrahydrofurans 260
45.19.1.1.1.6 Method 6: Formation of One C--C Bond at Other Sites 261
45.19.1.1.1.6.1 Variation 1: Bergman Cyclization 261
45.19.1.1.1.6.2 Variation 2: Tellurium-Mediated Cycloaddition 262
45.19.1.1.1.6.3 Variation 3: Reductive Cyclization 262
45.19.1.1.1.6.4 Variation 4: Ring-Closing Metathesis 263
45.19.1.1.1.6.5 Variation 5: Metal-Catalyzed Cyclization 263
45.19.1.1.2 Synthesis by Ring Transformation 264
45.19.1.1.2.1 Method 1: Valence Isomerism 264
45.19.1.1.2.1.1 Variation 1: From Dewar Benzenes 264
45.19.1.1.2.1.2 Variation 2: From Benzvalenes 265
45.19.1.1.2.2 Method 2: Rearrangement Reactions 265
45.19.1.1.2.2.1 Variation 1: Metal-Mediated Ring Expansion 265
45.19.1.1.2.2.2 Variation 2: Thermal Ring Expansion 266
45.19.1.1.2.2.3 Variation 3: Acid-Catalyzed Ring Contraction 266
45.19.1.1.3 Synthesis by Aromatization 267
45.19.1.1.3.1 Method 1: Oxidation of Hydrogenated Compounds 267
45.19.1.1.3.1.1 Variation 1: Dehydrogenation over Palladium on Carbon 267
45.19.1.1.3.1.2 Variation 2: Dehydrogenation by Sulfur 268
45.19.1.1.3.1.3 Variation 3: Dehydrogenation by Benzoquinones 269
45.19.1.1.3.1.4 Variation 4: Other Methods 269
45.19.1.1.3.2 Method 2: Synthesis from Tetralones or Naphthoquinones 270
45.19.1.1.3.2.1 Variation 1: Direct Conversion into Naphthalenes 270
45.19.1.1.3.2.2 Variation 2: Stepwise Conversion into Naphthalenes 271
45.19.1.1.3.3 Method 3: Elimination Reactions 272
45.19.1.1.3.3.1 Variation 1: Dehydration 272
45.19.1.1.3.3.2 Variation 2: Dehydrobromination 273
45.19.1.1.4 Synthesis by Substitution of Existing Substituents 273
45.19.1.1.4.1 Method 1: Substitution of Hydrogen 273
45.19.1.1.4.1.1 Variation 1: Friedel--Crafts Alkylation 273
45.19.1.1.4.2 Method 2: Substitution of Carbon 274
45.19.1.1.4.2.1 Variation 1: Dealkylation 274
45.19.1.1.4.3 Method 3: Substitution of Heteroatoms 275
45.19.1.1.4.3.1 Variation 1: Coupling with Organoboranes 275
45.19.1.1.4.3.2 Variation 2: Coupling with Grignard Reagents 276
45.19.1.1.4.3.3 Variation 3: Coupling with Organoaluminum Complexes 277
45.19.1.1.4.3.4 Variation 4: Coupling with Other Organometallic Reagents 278
45.19.1.1.5 Synthesis by Modification of Substituents 278
45.19.1.1.5.1 Method 1: Alkylation of Alkyl Substituents 278
45.19.1.1.5.2 Method 2: Dehalogenation of Halomethyl Groups 279
45.19.1.1.5.3 Method 3: Deoxygenation of Hydroxymethyl Groups 280
45.19.1.1.5.4 Method 4: Reduction of Acyl Groups 280
45.19.2 Product Subclass 2: Anthracenes 281
45.19.2.1 Synthesis of Product Subclass 2 281
45.19.2.1.1 Synthesis by Ring-Closure Reactions 281
45.19.2.1.1.1 Method 1: Formation of the Two Terminal Benzene Rings 281
45.19.2.1.1.1.1 Variation 1: Palladium-Catalyzed Cyclization 281
45.19.2.1.1.1.2 Variation 2: Copper-Catalyzed Cyclization with Organozirconium Compounds 282
45.19.2.1.1.1.3 Variation 3: Diels--Alder Reaction with Furans and Pyrroles 283
45.19.2.1.1.1.4 Variation 4: Diels--Alder Reaction of Benzo-1,4-quinone 284
45.19.2.1.1.1.5 Variation 5: Bergman Cyclization 285
45.19.2.1.1.2 Method 2: Formation of the Central Benzene Ring and a Terminal Benzene Ring 286
45.19.2.1.1.3 Method 3: Formation of the Central Benzene Ring 287
45.19.2.1.1.3.1 Variation 1: Acid-Catalyzed Cyclization of Benzyl Acetates 287
45.19.2.1.1.3.2 Variation 2: Thermal Cyclodehydration 287
45.19.2.1.1.3.3 Variation 3: Acid-Catalyzed Cyclization of Ketones 288
45.19.2.1.1.3.4 Variation 4: Acid-Catalyzed Cyclization of Azines 288
45.19.2.1.1.3.5 Variation 5: Diels--Alder Reaction of Isobenzofuran 289
45.19.2.1.1.3.6 Variation 6: Diels--Alder Reaction of Isoindoles 290
45.19.2.1.1.4 Method 4: Synthesis by Formation of a Terminal Benzene Ring 291
45.19.2.1.1.4.1 Variation 1: Iridium-Catalyzed Cyclization 291
45.19.2.1.1.4.2 Variation 2: Diels--Alder Reaction of Dienes 291
45.19.2.1.1.4.3 Variation 3: Bergman Cyclization 292
45.19.2.1.2 Synthesis by Ring Transformation 293
45.19.2.1.2.1 Method 1: Ring Contraction by Pyrolysis 293
45.19.2.1.3 Synthesis by Aromatization 294
45.19.2.1.3.1 Method 1: Oxidation of Dihydroanthracenes 294
45.19.2.1.3.1.1 Variation 1: Dehydrogenation by Conventional Methods 294
45.19.2.1.3.1.2 Variation 2: Dehydrogenation via an Anion 295
45.19.2.1.3.1.3 Variation 3: Dehydrogenation by Oxygen 296
45.19.2.1.3.2 Method 2: Synthesis from Oxygenated Compounds 297
45.19.2.1.3.2.1 Variation 1: Alkylation of Anthraquinones 297
45.19.2.1.3.2.2 Variation 2: Alkylation of Anthracen-9(10H)-ones 298
45.19.2.1.3.2.3 Variation 3: Reduction of Anthraquinones 299
45.19.2.1.3.2.4 Variation 4: Reduction of Anthracenones 300
45.19.2.1.3.3 Method 3: Elimination Reactions 301
45.19.2.1.3.3.1 Variation 1: Deoxygenation 301
45.19.2.1.3.3.2 Variation 2: Retro-Diels--Alder Reaction 302
45.19.2.1.4 Synthesis by Substitution of Existing Substituents 302
45.19.2.1.4.1 Method 1: Substitution of Hydrogen 302
45.19.2.1.4.1.1 Variation 1: Friedel--Crafts Alkylation 302
45.19.2.1.4.1.2 Variation 2: Alkylation of 9,10-Dihydroanthracenes 303
45.19.2.1.4.1.3 Variation 3: Alkylation of 1,4-Dihydroanthracene 305
45.19.2.1.4.2 Method 2: Substitution of Carbon 305
45.19.2.1.4.2.1 Variation 1: Dealkylation 305
45.19.2.1.4.3 Method 3: Substitution of Heteroatoms 306
45.19.2.1.4.3.1 Variation 1: Nucleophilic Alkylation 306
45.19.2.1.4.3.2 Variation 2: Alkylation via Organolithium Compounds 307
45.19.2.1.4.3.3 Variation 3: Cross-Coupling Reactions 308
45.19.2.1.5 Synthesis by Modification of Substituents 309
45.19.2.1.5.1 Method 1: Reduction of Acyl Groups 309
45.19.3 Product Subclass 3: 9H-Fluorenes 310
45.19.3.1 Synthesis of Product Subclass 3 310
45.19.3.1.1 Synthesis by Ring-Closure Reactions 311
45.19.3.1.1.1 Method 1: Formation of the Five-Membered Ring by Formation of Two Bonds 311
45.19.3.1.1.1.1 Variation 1: Palladium-Catalyzed Cyclizations 311
45.19.3.1.1.2 Method 2: Formation of the Five-Membered Ring by C9--CAr Bond Formation 312
45.19.3.1.1.2.1 Variation 1: Niobium-Catalyzed Cyclizations 312
45.19.3.1.1.2.2 Variation 2: Thermal Cyclization 312
45.19.3.1.1.2.3 Variation 3: Electrophilic Cyclization 313
45.19.3.1.1.3 Method 3: Formation of the Five-Membered Ring by CAr--CAr Bond Formation 313
45.19.3.1.1.3.1 Variation 1: Metal-Catalyzed Coupling 313
45.19.3.1.1.3.2 Variation 2: Palladium-Catalyzed Coupling 314
45.19.3.1.1.3.3 Variation 3: Electrophilic Substitution 314
45.19.3.1.1.4 Method 4: Formation of a Terminal Benzene Ring 315
45.19.3.1.1.4.1 Variation 1: Diels--Alder Reaction 315
45.19.3.1.1.4.2 Variation 2: Cyclization of Indene Derivatives 316
45.19.3.1.2 Synthesis by Reduction of Oxygenated Compounds 317
45.19.3.1.2.1 Method 1: Reduction of 9H-Fluoren-9-ones 317
45.19.3.1.2.2 Method 2: Reduction of 9H-Fluoren-9-ols 318
45.19.3.1.2.3 Method 3: Elimination and Reduction of 9H-Fluoren-9-ols 318
45.19.3.1.3 Synthesis by Substitution of Existing Substituents 319
45.19.3.1.3.1 Method 1: Substitution of Aromatic Hydrogen 319
45.19.3.1.3.1.1 Variation 1: Friedel--Crafts Alkylation 319
45.19.3.1.3.1.2 Variation 2: Transalkylation 320
45.19.3.1.3.2 Method 2: Substitution of Hydrogen at C9 321
45.19.3.1.3.2.1 Variation 1: Substitution Using Alkyl Halides 321
45.19.3.1.3.2.2 Variation 2: Substitution by Sodium Alkoxides 322
45.19.3.1.3.3 Method 3: Substitution of Carbon 323
45.19.3.1.3.3.1 Variation 1: Dealkylation 323
45.19.3.1.3.3.2 Variation 2: Decarboxylation 323
45.19.3.1.4 Synthesis by Modification of a Substituent 324
45.19.3.1.4.1 Method 1: Reduction of a Substituted Methyl Group 324
45.19.3.1.4.2 Method 2: Alkylation of an Acyl Group 324
45.19.3.1.4.3 Method 3: Reduction of an Acyl Group 325
45.19.4 Product Subclass 4: Higher Acenes 325
45.19.4.1 Synthesis of Product Subclass 4 325
45.19.4.1.1 Synthesis by Ring-Closure Reactions 326
45.19.4.1.1.1 Method 1: Metal-Catalyzed Cyclization 326
45.19.4.1.1.1.1 Variation 1: Cyclization of an Alkyne with Organozirconium Compounds 326
45.19.4.1.1.1.2 Variation 2: Cyclization of Iodoarenes with Organozirconium Compounds 327
45.19.4.1.1.2 Method 2: Condensation Reactions 329
45.19.4.1.1.2.1 Variation 1: Thermal Cyclodehydration 329
45.19.4.1.1.2.2 Variation 2: Friedel--Crafts Acylation 329
45.19.4.1.1.2.3 Variation 3: Condensation of Dialdehydes and Diketones 330
45.19.4.1.1.2.4 Variation 4: Condensation of Dialdehydes and Diesters 331
45.19.4.1.1.3 Method 3: Bergman Cyclization 332
45.19.4.1.1.4 Method 4: Diels--Alder Reaction 333
45.19.4.1.1.4.1 Variation 1: Reaction of Furans with Arynes 333
45.19.4.1.1.4.2 Variation 2: Reaction of Pyrroles with Arynes 335
45.19.4.1.1.4.3 Variation 3: Reaction of Bicyclic Pentaenes with Arynes 335
45.19.4.1.1.4.4 Variation 4: Reaction of o-Quinodimethanes with Dienophiles 336
45.19.4.1.1.4.5 Variation 5: Reaction of Dienes and 1,4-Quinones 338
45.19.4.1.2 Synthesis by Ring Transformation 339
45.20 Product Class 20: Cyclobutabenzenes, Biphenylenes, and [N]Phenylenes 348
45.20.1 Product Subclass 1: Cyclobutabenzenes 349
45.20.1.1 Synthesis of Product Subclass 1 349
45.20.1.1.1 Synthesis by Ring-Closure Reactions 349
45.20.1.1.1.1 Method 1: Thermal Reaction of Dienediynes 349
45.20.1.1.1.2 Method 2: Thermal Reaction of Dialk-1-ynylcyclobutenes 350
45.20.2 Product Subclass 2: Biphenylenes 351
45.20.2.1 Synthesis of Product Subclass 2 352
45.20.2.1.1 Synthesis by Ring-Closure Reactions 352
45.20.2.1.1.1 Method 1: Formation of Two Rings by Cobalt-Catalyzed Cyclization of Alkynes 352
45.20.2.1.1.2 Method 2: Formation of the Cyclobutadiene Ring by Dimerization of Benzynes 353
45.20.2.1.1.2.1 Variation 1: Generated from 2-Diazoniobenzoate 354
45.20.2.1.1.2.2 Variation 2: Generated by Elimination from 2-Metalated Halobenzenes 354
45.20.2.1.1.2.3 Variation 3: Generated by Oxidation of 1-Aminobenzotriazole 355
45.20.2.1.1.3 Method 3: Formation of the Four-Membered Ring by Coupling Reactions 356
45.20.2.1.1.3.1 Variation 1: Copper-Catalyzed Coupling of Organo Halides 356
45.20.2.1.1.3.2 Variation 2: Copper-Catalyzed Coupling of Organolithiums 357
45.20.2.1.1.3.3 Variation 3: Copper-Catalyzed Coupling of Organozincs 358
45.20.2.1.1.3.4 Variation 4: Coupling of Organomercurials 360
45.20.2.1.1.3.5 Variation 5: Thermal Radical Coupling 361
45.20.2.1.1.4 Method 4: Formation of One Benzene Ring by Cycloaddition of Cyclobutabenzene 361
45.20.2.1.1.4.1 Variation 1: With o-Quinodimethanes 361
45.20.2.1.1.4.2 Variation 2: With Other Dienes 362
45.20.2.1.2 Synthesis by Substitution 363
45.20.2.1.2.1 Method 1: Substitution of Hydrogen 363
45.20.2.1.2.1.1 Variation 1: Electrophilic Substitution 363
45.20.2.1.2.1.2 Variation 2: Substitution of Lithiated Biphenylene 364
45.20.2.1.2.2 Method 2: Substitution of Non-Hydrogen Atoms 365
45.20.2.1.2.2.1 Variation 1: Substitution of Silicon 365
45.20.2.1.2.2.2 Variation 2: Substitution of Halogen 365
45.20.2.1.3 Synthesis by Modification of Substituents 366
45.20.2.1.3.1 Method 1: Reduction of Oxygen-Containing Substituents 366
45.20.2.1.3.1.1 Variation 1: Reduction of Carbonyls 366
45.20.2.1.3.1.2 Variation 2: Reduction of Hydroxymethyl Groups 367
45.20.3 Product Subclass 3: [N]Phenylenes 367
45.20.3.1 Synthesis of Product Subclass 3 368
45.20.3.1.1 Synthesis by Ring-Closure Reactions 368
45.20.3.1.1.1 Method 1: Formation of Four- and Six-Membered Rings 368
45.20.3.1.1.1.1 Variation 1: Cobalt-Catalyzed Cyclization with an Alkyne 368
45.20.3.1.1.1.2 Variation 2: Cobalt-Catalyzed Cyclization with a Triyne 370
45.20.3.1.1.1.3 Variation 3: Cobalt-Catalyzed Intramolecular Cyclization 371
45.20.3.1.1.2 Method 2: Formation of a Six-Membered Ring by Cycloaddition 372
45.20.3.1.1.3 Method 3: Formation of Four-Membered Ring by Thermal Radical Coupling 373
45.20.3.1.2 Synthesis by Substitution 374
45.20.3.1.2.1 Method 1: Substitution of Silicon 374
45.21 Product Class 21: Phenanthrenes, Helicenes, and Other Angular Acenes 378
45.21.1 Product Subclass 1: Phenanthrenes and Benzo[c]phenanthrenes 379
45.21.1.1 Synthesis of Product Subclass 1 379
45.21.1.1.1 Synthesis by Intramolecular Cyclization Reactions 379
45.21.1.1.1.1 Method 1: Photodehydrocyclization of Stilbenes 379
45.21.1.1.1.2 Method 2: Photochemical Cyclization of Biaryl Aldehydes 381
45.21.1.1.1.3 Method 3: Friedel--Crafts Reactions 381
45.21.1.1.1.3.1 Variation 1: Friedel--Crafts Cycloalkylation 382
45.21.1.1.1.3.2 Variation 2: Friedel--Crafts Cycloacylation 382
45.21.1.1.1.3.3 Variation 3: Cyclization of Aromatic Nitriles 383
45.21.1.1.1.4 Method 4: Cyclization of 4-Arylquinol Ketals 383
45.21.1.1.1.5 Method 5: Homolytic Aromatic Substitution 385
45.21.1.1.1.5.1 Variation 1: The Pschorr Reaction 385
45.21.1.1.1.5.2 Variation 2: Tributyltin Hydride Mediated Radical Cyclization 385
45.21.1.1.1.6 Method 6: Oxidative Aryl Coupling 386
45.21.1.1.1.7 Method 7: The McMurry Reaction 387
45.21.1.1.1.8 Method 8: Ring-Closing Alkene Metathesis 388
45.21.1.1.1.9 Method 9: Directed Remote Metalation of Biaryls 388
45.21.1.1.1.10 Method 10: Cycloisomerization of Alkynylbiaryls 389
45.21.1.1.2 Syntheses Involving Intermolecular Cyclization Reactions 391
45.21.1.1.2.1 Method 1: Friedel--Crafts Acylation/Cycloalkylation 391
45.21.1.1.2.2 Method 2: Suzuki--Miyaura Coupling/Aldol Condensations 391
45.21.1.1.2.3 Method 3: Reactions of Arynes 392
45.21.1.1.2.3.1 Variation 1: Cycloadditions between Arynes and Furans 392
45.21.1.1.2.3.2 Variation 2: Cocyclization of Arynes and Allylic Halides 393
45.21.1.1.2.3.3 Variation 3: Cocyclization of Arynes and Halostyrenes 394
45.21.1.1.2.3.4 Variation 4: Cocyclization of Arynes and Alkynes 394
45.21.1.1.2.3.5 Variation 5: Cocyclization of Aryl Halides, Alkynes, and Arynes 395
45.21.1.1.2.4 Method 4: Cocyclization of Aromatic Halides and Alkynes 396
45.21.1.1.2.4.1 Variation 1: Cocyclization of Aryl Iodides and Alkynes 396
45.21.1.1.2.4.2 Variation 2: Cocyclization of Aryl Iodides and Alkynes in the Presence of Norbornene 397
45.21.1.1.2.4.3 Variation 3: Cocyclization of Iodobiaryls and Alkynes 397
45.21.1.1.2.4.4 Variation 4: Cocyclization of Diiodobiaryls and Alkynes 398
45.21.1.1.2.4.5 Variation 5: Chromium-Mediated Cocyclization between Halobiaryls and Alkynes 398
45.21.1.1.2.5 Method 5: Cocyclization between Chromium--Carbene Complexes and Alkynes 399
45.21.1.1.3 Synthesis by Other Processes 400
45.21.1.1.4 Synthesis of Nonracemic Benzo[c]phenanthrenes 401
45.21.1.1.4.1 Method 1: Resolution of Racemic 1,12-Dimethylbenzo[c]phenanthrene-5,8-dicarboxylic Acid 401
45.21.1.1.4.2 Method 2: Asymmetric Diels--Alder Cycloaddition/Aromatization 403
45.21.2 Product Subclass 2: Helicenes 403
45.21.2.1 Synthesis of Product Subclass 2 404
45.21.2.1.1 Synthesis by Intramolecular Cyclization Reactions with the Formation of One Ring 404
45.21.2.1.1.1 Method 1: Photodehydrocyclization of Stilbene-Type Precursors 404
45.21.2.1.1.2 Method 2: Ring-Closing Alkene Metathesis 408
45.21.2.1.1.3 Method 3: Carbenoid Coupling 410
45.21.2.1.1.4 Method 4: The McMurry Reaction 410
45.21.2.1.1.5 Method 5: Rearrangement of Benzannulated Enediynes 410
45.21.2.1.2 Synthesis by Intramolecular Cyclization Reactions with the Formation of Two Rings 411
45.21.2.1.2.1 Method 1: Photodehydrocyclization of 1,4-Bis(2-phenylvinyl)benzenes 411
45.21.2.1.2.2 Method 2: Friedel--Crafts Cycloacylation 414
45.21.2.1.2.3 Method 3: Friedel--Crafts Cycloalkylation 415
45.21.2.1.2.4 Method 4: Homolytic Aromatic Substitution 416
45.21.2.1.2.5 Method 5: C--H Arylation 418
45.21.2.1.3 Synthesis by Intramolecular Cyclization Reactions with the Formation of Three Rings 419
45.21.2.1.3.1 Method 1: Cycloisomerization of Dienetriynes 419
45.21.2.1.3.2 Method 2: Cycloisomerization of Triynes 422
45.21.2.1.4 Synthesis via Intermolecular Cyclization Reactions with the Formation of One Ring 426
45.21.2.1.4.1 Method 1: Diels--Alder Cycloadditions 426
45.21.2.1.5 Synthesis via Intermolecular Cyclization Reactions with the Formation of Two Rings 427
45.21.2.1.5.1 Method 1: Diels--Alder Cycloadditions 427
45.21.2.1.6 Synthesis by Other Processes 430
45.21.2.1.7 Synthesis of Nonracemic Helicenes 431
45.21.2.1.7.1 Method 1: Resolution of Racemic Helicen-1-ols 431
45.21.2.1.7.2 Method 2: Asymmetric Photodehydrocyclization 433
45.21.2.1.7.2.1 Variation 1: Diastereoselective Photodehydrocyclization Controlled by Internal Chiral Centers 433
45.21.2.1.7.2.2 Variation 2: Diastereoselective Photodehydrocyclization Controlled by External Chiral Centers 434
45.21.2.1.7.2.3 Variation 3: Stereoconservative Photodehydrocyclization Controlled via the Helical Unit 434
45.21.2.1.7.3 Method 3: Asymmetric Diels--Alder Cycloaddition/Aromatizations 435
45.21.2.1.7.4 Method 4: Diastereoselective Aromatic Oxy-Cope Rearrangements 436
45.21.2.1.7.5 Method 5: Enantioselective Cycloisomerization of Aromatic Triynes 436
45.21.2.1.7.6 Method 6: Enantioselective Cocyclization of Arynes and Alkynes 437
45.21.2.1.7.7 Method 7: Stereoconservative Cyclization of 1,1'-Binaphthalene-2,2'-diylbis(methylene)bis(triphenylphosphonium) Diperiodate 438
45.21.2.1.7.8 Method 8: Stereoconservative Stevens Rearrangements 439
45.21.3 Product Subclass 3: Other Angular Acenes 439
45.21.3.1 Synthesis of Product Subclass 3 439
45.22 Product Class 22: Pyrenes, Circulenes, and Other Condensed Acenes 448
45.22.1 Product Subclass 1: Pyrenes, Cyclopenta[cd]pyrenes, and Benzopyrenes 448
45.22.1.1 Synthesis of Product Subclass 1 449
45.22.1.1.1 Pyrenes 449
45.22.1.1.1.1 Method 1: Synthesis from [2.2]Metacyclophanes 449
45.22.1.1.1.1.1 Variation 1: Cycloaromatization 449
45.22.1.1.1.1.2 Variation 2: Cyclization and Aromatization of 8-Methoxy[2.2]metacyclophanes 449
45.22.1.1.1.2 Method 2: Synthesis from [2.2]Metacyclophane-1,9-dienes 450
45.22.1.1.1.3 Method 3: Lewis Acid Catalyzed Aromatization of [2.2]Metaparacyclophane-1,9-dienes 452
45.22.1.1.1.4 Method 4: Photocyclization and Aromatization of Biphenyl Derivatives 453
45.22.1.1.1.5 Method 5: Synthesis from 4-Ethynylphenanthrene Derivatives 454
45.22.1.1.2 Cyclopenta[cd]pyrene 455
45.22.1.1.2.1 Method 1: Flash-Vacuum Pyrolysis 455
45.22.1.1.2.1.1 Variation 1: Of 1-(1-Chlorovinyl)pyrene 455
45.22.1.1.2.1.2 Variation 2: Of 1,8-Bis(1-chlorovinyl)anthracene 455
45.22.1.1.2.2 Method 2: Synthesis via Cyclopenta[cd]pyren-3(4H)-one 456
45.22.1.1.3 Benzo[a]pyrene 457
45.22.1.1.3.1 Method 1: Oxidative Dehydrogenation of Dihydrobenzo[a]pyrenes 458
45.22.1.1.3.1.1 Variation 1: Synthesis via 11,12-Dihydrobenzo[a]pyrene 458
45.22.1.1.3.1.2 Variation 2: Synthesis via 9,10-Dihydrobenzo[a]pyrene 458
45.22.1.1.3.2 Method 2: Cyclodehydrogenation of a Biphenyl-Based Cyclophane 459
45.22.1.1.3.3 Method 3: Cyclization of 2-(2,6-Divinylphenyl)naphthalene Derivatives 459
45.22.1.1.3.4 Method 4: Dehydro-Diels--Alder Reaction of 1,8-Diethynylnaphthalene with Benzyne 461
45.22.1.1.4 Benzo[e]pyrene 461
45.22.1.1.4.1 Method 1: Synthesis from Pyrene 461
45.22.1.1.4.2 Method 2: Synthesis from Pyrene-4,5-dione 462
45.22.1.1.4.3 Method 3: Photocyclization of 4,5-Diphenylphenanthrene 462
45.22.1.1.4.4 Method 4: Synthesis from 7H-Benz[de]anthracene 463
45.22.1.1.5 Dibenzo[b,def]chrysene 464
45.22.1.1.5.1 Method 1: Synthesis via a Dodecahydrodibenzo[b,def]chrysene 464
45.22.1.1.5.2 Method 2: Cyclization of 1,5-Diarylnaphthalene Derivatives 465
45.22.1.1.6 Benzo[rst]pentaphene 466
45.22.1.1.6.1 Method 1: Synthesis via Dodecahydrobenzo[rst]pentaphene 466
45.22.1.1.6.2 Method 2: Cyclization of 1,4-Diarylnaphthalene Derivatives 467
45.22.1.1.7 Dibenzo[def,p]chrysenes 468
45.22.1.1.7.1 Method 1: Scholl Reaction of 1-Phenylbenz[a]anthracene Derivatives 468
45.22.1.1.7.2 Method 2: Cyclization of 7-Aryl-5,6-dihydro-4H-benz[de]anthracene Derivatives 469
45.22.1.1.7.3 Method 3: Cyclization of 12-Arylbenz[a]anthracene Derivatives 470
45.22.1.1.8 Dibenzo[fg,op]naphthacene 471
45.22.1.1.9 Dibenzo[c,mno]chrysene 471
45.22.1.1.10 Naphtho[8,1,2-ghi]chrysene 472
45.22.2 Product Subclass 2: Circulenes 472
45.22.2.1 Synthesis of Product Subclass 2 473
45.22.2.1.1 Dibenzo[ghi,mno]fluoranthene 473
45.22.2.1.1.1 Method 1: Flash-Vacuum Pyrolysis 473
45.22.2.1.1.2 Method 2: Solution-Phase Methods 475
45.22.2.1.2 Acenaphth[3,2,1,8-lmnoa]acephenanthrylene 477
45.22.2.1.2.1 Method 1: Synthesis from Fluoranthenes 477
45.22.2.1.3 8,9-Dihydroacenaphth[3,2,1,8-lmnoa]acephenanthrylene 478
45.22.2.1.3.1 Method 1: Synthesis from Dibenzo[ghi,mno]fluoranthenes 478
45.22.2.1.4 peri-Annulated Dibenzo[ghi,mno]fluoranthenes 478
45.22.2.1.4.1 Method 1: Synthesis from 1,10-Bis(bromomethyl)dibenzo[ghi,mno]fluoranthene 478
45.22.2.1.5 Benzo- and Dibenzo-Annulated Dibenzo[ghi,mno]fluoranthenes 479
45.22.2.1.6 Indeno-Annulated Dibenzo[ghi,mno]fluoranthenes 480
45.22.2.1.6.1 Method 1: Suzuki--Heck-Type Couplings 480
45.22.2.1.6.2 Method 2: Synthesis from Diynes and Alkynes 481
45.22.2.1.7 Coronene and Its Derivatives 482
45.22.2.1.7.1 Method 1: Synthesis from Benzo[ghi]perylene 482
45.22.2.1.7.2 Method 2: Synthesis from Anthracene Derivatives 482
45.22.2.1.7.3 Method 3: Dehydrocyclization of Cyclophanes 483
45.22.2.1.7.4 Method 4: Photocyclization of a Dienylcyclophane 484
45.22.2.1.8 Benzo[1,2,3-bc:4,5,6-b'c']dicoronene 484
45.22.2.1.9 Hexabenzo[bc,ef,hi,kl,no,qr]coronenes 485
45.22.2.1.9.1 Method 1: Lewis Acid Catalyzed Cyclodehydrogenation of Hexaarylbenzenes 485
45.22.2.1.10 Tribenzo[fgh,pqr,za1b1]trinaphthylenes 488
45.22.2.1.11 Peralkylated Coronenes 488
45.22.2.1.12 Dinaphtho[2,1,8,7-ghij:2',1',8',7'-nopq]pleiadene 489
45.22.2.1.12.1 Method 1: Cyclization of a Dialdehyde 489
45.22.2.1.12.2 Method 2: Flash-Vacuum Pyrolysis of a Cyclic Sulfone 490
45.22.2.1.13 Naphtho[2,1,8,7-ghij]naphtho[2',1',8',7':6,7,8]pleiadeno[10,11,12,1-nopqa]pleiadene 491
45.22.3 Product Subclass 3: Condensed Acenes 492
45.22.3.1 Synthesis of Product Subclass 3 492
45.22.3.1.1 Perylenes 492
45.22.3.1.1.1 Method 1: Thermal Decomposition of a Perylene Dianhydride 492
45.22.3.1.1.2 Method 2: Metal-Mediated Ullmann Reactions of 1,8-Dihalonaphthalenes 492
45.22.3.1.2 Benzo[a]perylene 493
45.22.3.1.3 Benzo[ghi]perylenes 494
45.22.3.1.3.1 Method 1: Synthesis from Perylene 494
45.22.3.1.3.2 Method 2: Ruthenium-Catalyzed Benzannulation 494
45.22.3.1.3.3 Method 3: Photocyclization 495
45.22.3.1.3.4 Method 4: Flash-Vacuum Pyrolysis 496
45.22.3.1.4 Dibenzo[a,e]perylene 496
45.22.3.1.5 Dibenzo[a,j]perylene 497
45.22.3.1.6 Dibenzo[cd,lm]perylene 498
45.22.3.1.6.1 Method 1: Dimerization of 1H-Phenalen-1-one 498
45.22.3.1.7 Naphtho[2,1-a]perylene 499
45.22.3.1.8 Tribenzo[de,kl,rst]pentaphene 499
45.22.3.1.9 Dibenzo[de,mn]naphthacene 500
45.22.3.1.10 Phenanthro[9,10-b]triphenylene 501
45.22.3.1.10.1 Method 1: Dehydrogenation of Octadecahydrophenanthro[9,10-b]triphenylene 501
45.22.3.1.10.2 Method 2: Zirconium-Mediated Coupling 502
45.22.3.1.10.3 Method 3: Palladium-Catalyzed [2 + 2 + 2] Cycloaddition 503
45.22.3.1.11 Benzo[c]naphtho[2,1-p]chrysenes 503
45.23 Product Class 23: Annulated Polycyclic Aromatic Hydrocarbons 510
45.23.1 Product Subclass 1: Acenaphthylenes 511
45.23.1.1 Synthesis of Product Subclass 1 511
45.23.1.1.1 Method 1: Synthesis from 1,2-Dihydroacenaphthylene Derivatives 511
45.23.1.1.2 Method 2: Synthesis from 1-Bromo- or 1,3-Dibromo-1H,3H-naphtho[1,8-cd]thiopyran 2,2-Dioxide 512
45.23.1.1.3 Method 3: Catalytic Annulation of Naphthalene Derivatives with Alkynes 513
45.23.2 Product Subclass 2: Cyclopent[fg]acenaphthylenes 515
45.23.2.1 Synthesis of Product Subclass 2 515
45.23.3 Product Subclass 3: Aceanthrylenes 515
45.23.3.1 Synthesis of Product Subclass 3 515
45.23.3.1.1 Method 1: Pyrolysis of 9-Ethynylanthracene 515
45.23.3.1.2 Method 2: Zirconium(IV)/Nickel(II)-Mediated Cycloadditions 516
45.23.3.1.3 Method 3: Palladium-Catalyzed Cycloaddition Reactions 516
45.23.4 Product Subclass 4: 1H-Phenalenes and Related Compounds 517
45.23.4.1 Synthesis of Product Subclass 4 517
45.23.4.1.1 Method 1: Synthesis of 1H-Phenalenes 517
45.23.4.1.1.1 Variation 1: By Dehydration of 2,3-Dihydro-1H-phenalen-1-ols 517
45.23.4.1.1.2 Variation 2: Via 1H-Phenalen-1-one 518
45.23.4.1.2 Method 2: Synthesis of Heteroatom-Substituted Phenalenes 519
45.23.4.1.2.1 Variation 1: Synthesis of Naphtho[1,8-bc]pyrans 519
45.23.4.1.2.2 Variation 2: Synthesis of 1-Methyl-1H-benzo[de]quinolines 520
45.23.4.1.3 Method 3: Synthesis of Cyclopenta[a]phenalenes 522
45.23.5 Product Subclass 5: Fluoranthenes 522
45.23.5.1 Synthesis of Product Subclass 5 522
45.23.5.1.1 Method 1: Diels--Alder Reaction 522
45.23.5.1.1.1 Variation 1: From Cyclopentadienone Derivatives 522
45.23.5.1.1.2 Variation 2: From Acenaphthylene 524
45.23.5.1.2 Method 2: Thermolytic Rearrangement of 1-(But-1-en-3-ynyl)-8-ethynylnaphthalenes 525
45.23.5.1.3 Method 3: Metal-Catalyzed C--C Bond-Forming Reactions 526
45.23.5.1.3.1 Variation 1: Palladium-Catalyzed Annulations 526
45.23.5.1.3.2 Variation 2: Rhodium-Catalyzed [(2 + 2) + 2] Cycloaddition 527
45.23.5.1.3.3 Variation 3: Tellurium-Mediated Cycloaromatization 528
45.23.6 Product Subclass 6: Benzo[j]fluoranthenes 529
45.23.6.1 Synthesis of Product Subclass 6 529
45.23.6.1.1 Method 1: Palladium-Catalyzed Annulation of Binaphthalenyl Trifluoromethanesulfonates 529
45.23.7 Product Subclass 7: Benzo[k]fluoranthenes 530
45.23.7.1 Synthesis of Product Subclass 7 530
45.23.7.1.1 Method 1: Synthesis from 1,8-Bis(diphenylethynyl)naphthalene 530
45.23.7.1.2 Method 2: Diels--Alder Reaction 530
45.23.7.1.3 Method 3: Palladium-Catalyzed Annulations 531
45.23.8 Product Subclass 8: Benz[e]acephenanthrylenes 531
45.23.8.1 Synthesis of Product Subclass 8 531
45.23.8.1.1 Method 1: Palladium-Catalyzed Annulation Reactions 531
45.23.8.1.1.1 Variation 1: From Phenanthrene Derivatives 531
45.23.8.1.1.2 Variation 2: From Fluorene Derivatives 532
45.23.8.1.2 Method 2: Base-Induced Cyclization of 9-(2-Bromobenzylidene)-9H-fluorene Derivatives 533
45.24 Product Class 24: Pentalenes, s-Indacenes, as-Indacenes, Azulenes, and Heptalenes, and Their Benzo Derivatives 536
45.24.1 Product Subclass 1: Pentalenes 537
45.24.1.1 Synthesis of Product Subclass 1 538
45.24.1.1.1 Pentalene Dimers 538
45.24.1.1.1.1 Method 1: Elimination of Hydrogen Bromide from 1-Bromo-1,2-dihydropentalene Followed by Dimerization 538
45.24.1.1.1.2 Method 2: Oxidative Coupling of Dilithium Pentalenediide 539
45.24.1.1.2 Benzopentalenes and Their Heteroatom Analogues 539
45.24.1.1.2.1 Method 1: Benzopentalenes by Flash-Vacuum Pyrolysis of Benzofurandiones 540
45.24.1.1.2.2 Method 2: 1H-Cyclopent[cd]indene by Gas-Phase Dehydrogenation/Decarboxylation 541
45.24.1.1.2.3 Method 3: 1H-Cyclopent[cd]indene by Gas-Phase Elimination of Acetic Acid 541
45.24.1.1.2.4 Method 4: 1H-Cyclopent[cd]indene by Flash-Vacuum Pyrolysis Induced Rearrangement of 1,2-Didehydronaphthalene 542
45.24.1.1.3 Dibenzopentalenes 542
45.24.1.1.3.1 Method 1: Dual Flash-Vacuum Pyrolysis of 1-Naphthylmethyl 3-Phenylprop-2-ynoate 542
45.24.1.1.3.2 Method 2: Rearrangement of Anthryl-9,10-dicarbenic Species 543
45.24.1.1.3.3 Method 3: Platinum(IV)-Catalyzed Ring Closure of 1,2-Bis(phenylethynyl)benzenes 543
45.24.1.1.3.4 Method 4: Tellurium-Mediated Chlorine Transfer 544
45.24.1.1.3.5 Method 5: Transition-Metal-Catalyzed Homocoupling of 1-Ethynyl-2-halobenzenes 545
45.24.1.1.3.6 Method 6: Carbolithiation of 5,6,11,12-Tetradehydrodibenzo[a,e]cyclooctene 547
45.24.2 Product Subclass 2: s-Indacenes 550
45.24.2.1 Synthesis of Product Subclass 2 550
45.24.2.1.1 1,3,5,7-Tetrasubstituted s-Indacenes and Their Heteroatom Analogues 550
45.24.2.1.1.1 Method 1: 1,3,5,7-Tetra-tert-butyl-s-indacene by Cyclocondensation 551
45.24.2.1.1.2 Method 2: 1,3,5,7-Tetra-tert-butyl-s-indacene by Acid-Catalyzed Condensation 551
45.24.3 Product Subclass 3: as-Indacenes 551
45.24.4 Product Subclass 4: Azulenes and Benzazulenes 553
45.24.4.1 Synthesis of Product Subclass 4 553
45.24.4.1.1 Azulenes 553
45.24.4.1.1.1 Method 1: Carbenoid [2 + 1]-Addition Reactions 553
45.24.4.1.1.1.1 Variation 1: Intermolecular Carbenoid Addition to a 4,7-Dihydroindane 553
45.24.4.1.1.1.2 Variation 2: Intramolecular Carbenoid Addition of (3-Aryl-3-bromopropanoyl)diazomethanes 554
45.24.4.1.1.1.3 Variation 3: Reaction of 4-Aryl-2-oxobutanoates with Lithium Diazo(trimethylsilyl)methane 556
45.24.4.1.1.2 Method 2: Ketene [2 + 2]-Addition Reactions 558
45.24.4.1.1.2.1 Variation 1: With 3-Chloroazulen-2(1H)-one as an Intermediate 558
45.24.4.1.1.2.2 Variation 2: Addition of Dichloroketene to 7-Methylcyclohepta-1,3,5-triene 559
45.24.4.1.1.2.3 Variation 3: With 1-Chloroazulenes as Intermediates 560
45.24.4.1.1.3 Method 3: [6 + 4]-Addition Reactions 561
45.24.4.1.1.3.1 Variation 1: Of 2-(Cyclopenta-2,4-dien-1-ylidene)-1,3-dioxolane and 2H-Pyran-2-one 561
45.24.4.1.1.3.2 Variation 2: Of a 6-Aminofulvene and Thiophene 1,1-Dioxides 562
45.24.4.1.1.3.3 Variation 3: Of Substituted Fulvenes and Thiophene 1,1-Dioxides 563
45.24.4.1.1.4 Method 4: [7 + 3]-Addition Reactions 564
45.24.4.1.1.5 Method 5: [8 + 2]-Addition Reactions 565
45.24.4.1.1.5.1 Variation 1: Reaction of Substituted Tropone Dimethyl Ketals with Dimethyl Acetylenedicarboxylate 565
45.24.4.1.1.5.2 Variation 2: Reaction of Highly Methylated 2H-Cyclohepta[b]furan-2-ones with Enol Ethers or Enamines 566
45.24.4.1.1.5.3 Variation 3: Thermal Intermolecular Reactions of 2H-Cyclohepta[b]furan-2-ones 568
45.24.4.1.1.5.4 Variation 4: Reactions of 2H-Cyclohepta[b]furan-2-ones with Vinyl Ethers, Acetals, Ortho Esters, or Their Analogues 569
45.24.4.1.1.5.5 Variation 5: Synthesis of Methyl (Azulen-2-yl)acetates 571
45.24.4.1.1.5.6 Variation 6: 2-Alkyl-3-cyanoazulene-1-carboxylic Acids as Precursors for 2-Alkylazulenes 571
45.24.4.1.1.6 Method 6: Transformation of Azulen-1(8aH)-ones into 1-Acetoxyazulenes 572
45.24.4.1.1.7 Method 7: Seven-Membered Ring Formation through a Robinson Annulation 573
45.24.4.1.1.8 Method 8: Five-Membered Ring Formation through an Intramolecular Wittig Reaction 573
45.24.4.1.1.8.1 Variation 1: Reaction of 5-[(Dimethylamino)methylene]cyclopenta-1,3-dienecarbaldehyde with an Allylidenephosphorane 574
45.24.4.1.1.8.2 Variation 2: Reaction of Dimethyl Acetylenedicarboxylate with [(Triphenylarsoranylidene)methyl]cycloheptatrienones 575
45.24.4.1.1.9 Method 9: Five-Membered Ring Formation through Nazarov Cyclization Reactions 575
45.24.4.1.1.10 Method 10: Ziegler--Hafner Synthesis of Deuterated Azulenes 577
45.24.4.1.1.11 Method 11: Methyl Azulene-2-carboxylates by the Hafner Method 577
45.24.4.1.1.12 Method 12: Conversion of 2-Arylazulene-1,1(8aH)-dicarbonitriles into 2-Arylazulene-1-carbonitriles 578
45.24.4.1.2 Benzazulenes 579
45.24.4.1.2.1 Method 1: Benz[a]azulenes by an Intramolecular Reaction of a Carbenoid 580
45.24.4.1.2.2 Method 2: Benz[a]azulenes by an Intramolecular Heck Reaction 580
45.24.4.1.2.3 Method 3: Benz[a]azulenes by Construction of the Benzo Ring 582
45.24.4.1.2.4 Method 4: Synthesis of Heteroatom Analogues of Benz[a]azulene 583
45.24.4.1.2.5 Method 5: Benz[cd]azulenes by the Buchner Reaction of Cyclopent[cd]azulenes 584
45.24.4.1.2.6 Method 6: Benz[cd]azulenes by Successive Formation of the Benzo Ring 584
45.24.4.1.2.7 Method 7: Alkylation of 4,5-Dihydro-3H-benz[cd]azulene To Give 9b-Methyl-9bH-benz[cd]azulene 585
45.24.5 Product Subclass 5: Heptalenes and Benzoheptalenes 585
45.24.5.1 Synthesis of Product Subclass 5 585
45.24.5.1.1 Heptalenes 585
45.24.5.1.1.1 Method 1: Hafner's Procedure 586
45.24.5.1.1.1.1 Variation 1: Reaction in Toluene 587
45.24.5.1.1.1.2 Variation 2: Reaction in Acetonitrile in the Presence of Dihydridotetrakis(triphenylphosphine)ruthenium 588
45.24.5.1.1.2 Method 2: Rearrangement of Dimethyl 11-Methyltricyclo[6.2.2.01,7]dodeca-2,4,6,9,11-pentaene-9,10-dicarboxylates 589
45.24.5.1.1.3 Method 3: Photochemical p-Bond Shift in Heptalene-4,5-dicarboxylates 590
45.24.5.1.1.4 Method 4: Thermal Rearrangement of Heptalene-4,5-dicarboxylates 591
45.24.5.1.2 Benzoheptalenes 592
45.24.5.1.2.1 Method 1: Decarboxylation of Dimethyl Benzo[a]heptalene-6,7-dicarboxylate 592
45.24.5.1.2.2 Method 2: Methoxy-Substituted Benzo[a]heptalenes from Colchiceines 593
45.24.5.1.2.3 Method 3: Thermal Reaction of Benz[a]azulenes with Acetylenedicarboxylates 594
45.24.5.1.2.4 Method 4: Alkylation of Heptalene-4,5-dicarboxylates with (Sulfonylmethyl)lithiums 595
45.24.5.1.2.4.1 Variation 1: Alkylation of Heptalene Lactones with [(Phenylsulfonyl)methyl]lithium 597
45.24.5.1.2.4.2 Variation 2: Alkylation of Methyl 4(5)-[(Phenylsulfonyl)acetyl]heptalene-5(4)-carboxylates with [(Phenylsulfonyl)methyl]lithium 597
45.24.5.1.2.5 Method 5: Diels--Alder Reaction of Heptaleno[1,2-c]furans with Electron-Deficient Alkenes 598
45.24.5.1.2.5.1 Variation 1: Reaction with (2E)-But-2-enedinitrile 598
45.24.5.1.2.5.2 Variation 2: Reaction with Dimethyl (2Z)-But-2-enedioate 600
45.24.5.1.2.5.3 Variation 3: Reaction with (Z)-1,2-Bis(phenylsulfonyl)ethene 600
45.24.5.1.2.6 Method 6: Benzo[a]heptalene-2,3-dicarboxylates by Electrocyclization 602
45.25 Product Class 25: Extended Polyaromatic Hydrocarbons: Graphite, Fullerene, and Carbon Nanotube Substructures 608
45.25.1 Product Subclass 1: Graphite Substructures and Graphene 608
45.25.1.1 Synthesis of Product Subclass 1 608
45.25.1.1.1 Synthesis of Graphite Substructures 608
45.25.1.1.1.1 Method 1: Intermolecular Fusion of Small Polycyclic Aromatic Hydrocarbon Building Blocks 611
45.25.1.1.1.2 Method 2: Intramolecular Oxidative Cyclodehydrogenation of Oligophenylenes 611
45.25.1.1.1.3 Method 3: Intramolecular Photodehydrocyclization 615
45.25.1.1.1.4 Method 4: Cyclodehydrogenation on Copper 616
45.25.1.1.2 Synthesis of Graphene 617
45.25.1.1.2.1 Method 1: Exfoliation from Highly Oriented Pyrolytic Graphite 617
45.25.1.1.2.2 Method 2: Synthesis from Silicon Carbide 618
45.25.1.1.2.3 Method 3: Oxidation of Graphite: The Graphene Oxide Approach 618
45.25.1.1.2.4 Method 4: Other Processes 618
45.25.2 Product Subclass 2: Fullerene Substructures 619
45.25.2.1 Synthesis of Product Subclass 2 619
45.25.2.1.1 Synthesis of Fullerenes 619
45.25.2.1.1.1 Method 1: Vaporization of Graphite 619
45.25.2.1.1.2 Method 2: Combustion 620
45.25.2.1.1.3 Method 3: Pyrolysis of Hydrocarbons 620
45.25.2.1.1.4 Method 4: Total Synthesis 620
45.25.2.1.1.4.1 Variation 1: Flash-Vacuum Pyrolysis 620
45.25.2.1.1.4.2 Variation 2: Cyclodehydrogenation on Platinum 621
45.25.2.1.2 Synthesis of Functionalized Fullerenes 622
45.25.2.1.3 Synthesis of Fullerene Substructures and Other Geodesic Polyarenes 624
45.25.2.1.3.1 Method 1: Flash-Vacuum Pyrolysis 625
45.25.2.1.3.2 Method 2: Intramolecular Palladium-Catalyzed Arylation 627
45.25.2.1.3.3 Method 3: Intramolecular Carbenoid Coupling 628
45.25.2.1.3.4 Method 4: Cyclodehydrogenation on Ruthenium 628
45.25.3 Product Subclass 3: Carbon Nanotube Substructures 628
45.25.3.1 Synthesis of Product Subclass 3 629
45.25.3.1.1 Synthesis of Carbon Nanotubes 629
45.25.3.1.1.1 Method 1: Electric-Arc Discharge of Graphite Electrodes 629
45.25.3.1.1.2 Method 2: Laser Ablation of Graphite 630
45.25.3.1.1.3 Method 3: Chemical Vapor Deposition 630
45.25.3.1.1.4 Method 4: Other Processes 630
45.25.3.1.2 Covalent Modification of Carbon Nanotubes 631
45.25.3.1.2.1 Method 1: Chemical Modification of Defect Sites 631
45.25.3.1.2.2 Method 2: Chemical Functionalization of the Carbon Nanotube Skeleton 632
45.26 Product Class 26: Triphenylenes, Tetraphenylenes, and Related Compounds 640
45.26.1 Product Subclass 1: Triphenylenes 640
45.26.1.1 Synthesis of Product Subclass 1 640
45.26.1.1.1 Method 1: Oxidative Trimerization of Benzene Derivatives 640
45.26.1.1.1.1 Variation 1: Oxidative Trimerization of 1,2-Dialkoxybenzenes 640
45.26.1.1.1.2 Variation 2: Trimerization of Catechol Ketals 642
45.26.1.1.2 Method 2: Oxidative Cyclization 644
45.26.1.1.2.1 Variation 1: Oxidative Addition of Benzene Derivatives to Biaryls 644
45.26.1.1.2.2 Variation 2: Oxidative Cyclization of o-Terphenyls 648
45.26.1.1.3 Method 3: Cyclization by Condensation Reaction 649
45.26.1.1.3.1 Variation 1: Metal-Mediated Ring Closure 649
45.26.1.1.3.2 Variation 2: Metal-Catalyzed Benzannulation of 2-Halobiphenyls 652
45.26.1.1.3.3 Variation 3: Metal-Catalyzed Trimerization of 2-(Trimethylsilyl)aryl Trifluoromethanesulfonates 654
45.26.1.1.4 Method 4: [4 + 2]-Cycloaddition Sequences 654
45.26.1.1.4.1 Variation 1: Conversion of Phencyclones 655
45.26.2 Product Subclass 2: Hydrotriphenylenes 657
45.26.2.1 Synthesis of Product Subclass 2 657
45.26.2.1.1 Method 1: Synthesis of 1,2,3,4,5,6,7,8,9,10,11,12-Dodecahydrotriphenylenes 657
45.26.2.1.1.1 Variation 1: Aldol Trimerization of Cyclohexanones 657
45.26.2.1.2 Method 2: Synthesis of Dihydrotriphenylenes 659
45.26.2.1.2.1 Variation 1: Synthesis of 1,2-Dihydrotriphenylene 659
45.26.2.1.2.2 Variation 2: Synthesis of 1,4-Dihydrotriphenylene 661
45.26.3 Product Subclass 3: Tetraphenylenes 661
45.26.3.1 Synthesis of Product Subclass 3 662
45.26.3.1.1 Method 1: Dimerization of Biphenylene Derivatives 662
45.26.3.1.1.1 Variation 1: Thermal Dimerization of Biphenylenes 662
45.26.3.1.1.2 Variation 2: Transition-Metal-Catalyzed Dimerization of Biphenylenes 663
45.26.3.1.2 Method 2: Oxidation of Dimetalated Derivatives 665
45.26.3.1.2.1 Variation 1: Oxidation of 1,2-Dimetalated Benzenes 665
45.26.3.1.2.2 Variation 2: Oxidation of 2,2'-Dimetalated Biphenyls 666
45.26.3.1.2.3 Variation 3: Mixed Oxidation of 2,2'-Dimetalated Biphenyls 669
45.26.3.1.3 Method 3: Cycloaddition with Dehydrobenzocyclooctene Derivatives 670
45.26.3.1.3.1 Variation 1: Cycloaddition of 2,3,4,5-Tetraphenylcyclopenta-2,4-dienone with Dehydrobenzocyclooctene Derivatives 671
45.26.3.1.3.2 Variation 2: Cycloaddition of Furans with Dehydrobenzocyclooctene Derivatives 671
45.26.4 Product Subclass 4: Higher Phenylenes 676
45.26.4.1 Synthesis of Product Subclass 4 677
45.26.4.1.1 Method 1: Oxidation of 2,2'-Dimetalated Biphenyls 677
45.26.4.1.1.1 Variation 1: Direct Oxidation of 2,2'-Dimetalated Biphenyls 677
45.26.4.1.1.2 Variation 2: Oxidation of 2,2'-Dimetalated Biphenyls via an Intermediate Chromate 679
45.26.4.1.2 Method 2: Cycloaddition Sequences with Dehydroannulenes 681
45.26.4.1.2.1 Variation 1: Benzannulation of Dehydroannulenes by Addition of Cyclopentadienones 681
45.27 Product Class 27: Calixarenes 686
45.27.1 Product Subclass 1: Calix[4]arenes 687
45.27.1.1 Synthesis of Product Subclass 1 687
45.27.1.1.1 Method 1: One-Step Synthesis 687
45.27.1.1.1.1 Variation 1: Base-Induced Reactions 687
45.27.1.1.1.2 Variation 2: Acid-Induced Reactions 689
45.27.1.1.2 Method 2: Functionalization Reactions 690
45.27.1.1.2.1 Variation 1: Substitution of Hydrogen 690
45.27.1.1.2.2 Variation 2: Substitution of tert-Butyl Groups 696
45.27.1.1.2.3 Variation 3: O-Demethylation 697
45.27.1.1.2.4 Variation 4: Substitution of Bromide 698
45.27.1.1.2.5 Variation 5: Substitution of Hydroxy Groups 700
45.27.1.1.2.6 Variation 6: Reduction of Nitro Groups 701
45.27.1.1.2.7 Variation 7: Protection of Phenolic Hydroxy Groups 703
45.27.2 Product Subclass 2: Calix[5]arenes 708
45.27.2.1 Synthesis of Product Subclass 2 708
45.27.2.1.1 Method 1: One-Step Synthesis 708
45.27.2.1.2 Method 2: Fragment Condensation Synthesis 708
45.27.2.1.2.1 Variation 1: [3 + 2]-Type Condensation 708
45.27.2.1.2.2 Variation 2: Linear-Type Condensation 709
45.27.2.1.3 Method 3: Functionalization Reactions 710
45.27.2.1.3.1 Variation 1: Substitution of Hydrogen 710
45.27.2.1.3.2 Variation 2: Substitution of tert-Butyl Groups 712
45.27.2.1.3.3 Variation 3: Substitution of Halogen 714
45.27.2.1.3.4 Variation 4: Reduction of Nitro Groups 717
45.27.2.1.3.5 Variation 5: Protection of Phenolic Hydroxy Groups 718
45.27.3 Product Subclass 3: Calix[6]arenes 719
45.27.3.1 Synthesis of Product Subclass 3 719
45.27.3.1.1 Method 1: One-Step Synthesis 719
45.27.3.1.2 Method 2: Functionalization Reactions 720
45.27.3.1.2.1 Variation 1: Substitution of Hydrogen 720
45.27.3.1.2.2 Variation 2: Substitution of tert-Butyl Groups 724
45.27.3.1.2.3 Variation 3: Reduction of Nitro Groups 726
45.27.3.1.2.4 Variation 4: Protection of Phenolic Hydroxy Groups 726
45.27.4 Product Subclass 4: Calix[7]arenes 730
45.27.4.1 Synthesis of Product Subclass 4 730
45.27.4.1.1 Method 1: One-Step Synthesis 730
45.27.4.1.2 Method 2: Functionalization Reactions 731
45.27.4.1.2.1 Variation 1: Substitution of tert-Butyl Groups 731
45.27.4.1.2.2 Variation 2: Protection of Phenolic Hydroxy Groups 733
45.27.5 Product Subclass 5: Calix[8]arenes 734
45.27.5.1 Synthesis of Product Subclass 5 734
45.27.5.1.1 Method 1: One-Step Synthesis 734
45.27.5.1.2 Method 2: Functionalization Reactions 735
45.27.5.1.2.1 Variation 1: Substitution of Hydrogen 735
45.27.5.1.2.2 Variation 2: Substitution of tert-Butyl Groups 739
45.27.5.1.2.3 Variation 3: Substitution of Nitro Groups 741
45.27.5.1.2.4 Variation 4: Protection of Phenolic Hydroxy Groups 741
45.27.6 Product Subclass 6: Calix[4]resorcinarene-4,6,10,12,16,18,22,24-octols 744
45.27.6.1 Synthesis of Product Subclass 6 744
45.27.6.1.1 Method 1: One-Step Synthesis 744
45.27.6.1.1.1 Variation 1: Acid-Induced Reactions 744
45.27.6.1.1.2 Variation 2: Base-Induced Reactions 745
45.27.6.1.2 Method 2: Functionalization Reactions 746
45.27.6.1.2.1 Variation 1: Substitution of Hydrogen 746
45.27.6.1.2.2 Variation 2: Substitution of Bromide 747
45.27.6.1.2.3 Variation 3: Protection of Phenolic Hydroxy Groups 749
45.27.7 Product Subclass 7: Homooxacalix[3]arene-25,26,27-triols 752
45.27.7.1 Synthesis of Product Subclass 7 752
45.27.7.1.1 Method 1: One-Step Synthesis 752
45.27.7.1.2 Method 2: Functionalization Reactions 753
45.27.7.1.2.1 Variation 1: Substitution of Bromide 753
45.27.7.1.2.2 Variation 2: Protection of Phenolic Hydroxy Groups 755
45.28 Product Class 28: Mononuclear Cyclophanes 760
45.28.1 Product Subclass 1: [n]Meta- and [n]Paracyclophanes 760
45.28.1.1 Synthesis of Product Subclass 1 760
45.28.1.1.1 Method 1: Construction of the Bridge by Acyloin Condensation 760
45.28.1.1.2 Method 2: Construction of the Bridge by Cross-Coupling Reactions with 1,.-Diorganometallic Species 761
45.28.1.1.2.1 Variation 1: Nickel-Catalyzed Cross Coupling with Di-Grignard Species (Kumada--Tamao Coupling) 761
45.28.1.1.2.2 Variation 2: Palladium-Catalyzed Cross Coupling with Diboryl Species (Suzuki--Miyaura Coupling) 762
45.28.1.1.3 Method 3: Construction of the Bridge by Cycloaddition 763
45.28.1.1.3.1 Variation 1: Reaction of Tetracyano-1,4-quinodimethane with Dicyclopropylethenes and Cyclopropylbutadienes 763
45.28.1.1.3.2 Variation 2: Reaction of Spirocyclic Cyclopropyl-Substituted Cyclohexadienes with Dienes 764
45.28.1.1.4 Method 4: Construction of the Bridge by Pyrolysis of Cyclic Sulfones 765
45.28.1.1.5 Method 5: Construction of the Bridge by Ring Contraction 769
45.28.1.1.6 Method 6: Construction of the Bridge by Hydrolysis of Furans 771
45.28.1.1.7 Method 7: Construction of the Aromatic Ring by Cycloaddition 771
45.28.1.1.7.1 Variation 1: Diels--Alder Reaction 771
45.28.1.1.7.2 Variation 2: Transition-Metal-Catalyzed Alkyne Cyclotrimerization 772
45.28.1.1.7.3 Variation 3: Palladium-Catalyzed Cycloaddition of Enynes 775
45.28.1.1.7.4 Variation 4: Cycloaddition of Fischer-Type Chromium--Carbene Complexes 777
45.28.1.1.8 Method 8: Construction of the Aromatic Ring by Rearrangement 778
45.28.1.1.8.1 Variation 1: Rearrangement of (Dibromocyclopropyl)carbinol-Containing [n.3.1]Propellanes 778
45.28.1.1.8.2 Variation 2: Rearrangement of Halogen-Substituted Unsaturated [n.3.1]Propellanes 779
45.28.1.1.8.3 Variation 3: Rearrangement of Dewar Benzene Type [n.2.2]Propellanes 780
45.28.1.1.8.4 Variation 4: Pyrolysis of a Tosylhydrazone Lithium Salt (Carbenoid Rearrangement) 783
45.28.2 Product Subclass 2: [n]Heterophanes 784
45.28.2.1 Synthesis of Product Subclass 2 784
45.28.2.1.1 Method 1: Synthesis by Paar--Knorr Reaction 784
45.28.2.1.2 Method 2: Synthesis by Nickel-Catalyzed Grignard Cyclocoupling 788
45.28.2.1.3 Method 3: Synthesis by Photoinduced Electron Transfer Promoted [3 + 2] Cycloaddition of Azirines 789
45.28.2.1.4 Method 4: Synthesis by Cobalt-Mediated [2 + 2 + 2] Cycloaddition of Diynes with Nitriles 790
45.28.2.1.5 Method 5: Synthesis by Ring Contraction Using Ruthenium(VIII) Oxide 791
45.28.3 Product Subclass 3: [n]Cyclophanes Containing Polycyclic Aromatic Rings 791
45.28.3.1 Synthesis of Product Subclass 3 791
45.28.3.1.1 Method 1: Synthesis by Acyloin Condensation 791
45.28.3.1.2 Method 2: Synthesis by Furan Hydrolysis 792
45.28.3.1.3 Method 3: Synthesis by Substitution of Dihaloalkanes 793
45.28.3.1.4 Method 4: Synthesis by Cycloaddition 795
45.28.3.1.5 Method 5: Synthesis by Rearrangement 798
45.29 Product Class 29: Polynuclear Cyclophanes 804
45.29.1 Product Subclass 1: Polynuclear Cyclophanes with Bridging Aliphatic Carbon Groups 806
45.29.1.1 Synthesis of Product Subclass 1 806
45.29.1.1.1 Method 1: Construction of the Bridge by Condensation Reactions 806
45.29.1.1.1.1 Variation 1: By Acyloin Condensation 806
45.29.1.1.1.2 Variation 2: By Aldol Condensation 808
45.29.1.1.1.3 Variation 3: By Wittig Reaction 809
45.29.1.1.1.4 Variation 4: By Alkene Metathesis 810
45.29.1.1.1.5 Variation 5: By McMurry Reaction 811
45.29.1.1.2 Method 2: Construction of the Bridge by Coupling Reactions 814
45.29.1.1.2.1 Variation 1: By Friedel--Crafts Reaction 814
45.29.1.1.2.2 Variation 2: By Wurtz Coupling 814
45.29.1.1.2.3 Variation 3: By Alkylation of an Active Methylene Group 815
45.29.1.1.2.4 Variation 4: By Coupling Using Tosylmethyl Isocyanide 816
45.29.1.1.3 Method 3: Construction of the Bridge by Addition Reactions 818
45.29.1.1.3.1 Variation 1: By Cycloaddition of p-Quinodimethanes 818
45.29.1.1.3.2 Variation 2: By Cycloaddition of o-Quinodimethanes 819
45.29.1.1.3.3 Variation 3: By Photochemical [2 + 2] Cycloaddition of Alkenes 820
45.29.1.1.3.4 Variation 4: By Acid-Catalyzed Addition of Alkenes 821
45.29.1.1.3.5 Variation 5: By C--H Insertion of a Carbene 822
45.29.1.1.3.6 Variation 6: By Insertion of Alkenes into the Bridge 822
45.29.1.1.4 Method 4: Construction of the Bridge by Extrusion of a Sulfur or Selenium Atom 823
45.29.1.1.4.1 Variation 1: By Thermal Extrusion of Sulfur Dioxide 823
45.29.1.1.4.2 Variation 2: By Photochemical Extrusion of Sulfur 825
45.29.1.1.4.3 Variation 3: By Wittig Rearrangement 826
45.29.1.1.4.4 Variation 4: By Stevens Rearrangement 827
45.29.1.1.4.5 Variation 5: By Extrusion of Selenium Atoms 829
45.29.1.1.5 Method 5: Construction of the Aromatic Ring 829
45.29.1.1.5.1 Variation 1: By Cyclotrimerization of Alkynes 829
45.29.1.1.5.2 Variation 2: By Valence Isomerization of Dewar Benzene Isomers 830
45.29.1.1.6 Method 6: Modification of the Aromatic Ring 831
45.29.1.1.6.1 Variation 1: By Annulation to the Aromatic Rings 831
45.29.1.1.6.2 Variation 2: By Oxidative Transformation of the Aromatic Rings 832
45.29.1.1.7 Method 7: Isomerization by Migration of the Bridge 832
45.29.2 Product Subclass 2: Polynuclear Cyclophanes without Bridging Aliphatic Carbon Groups 833
45.29.2.1 Synthesis of Product Subclass 2 833
45.29.2.1.1 Method 1: Cross Coupling of Aryl Halides 833
45.29.2.1.1.1 Variation 1: Oxidative Coupling of Arylene Di-Grignard Reagents 833
45.29.2.1.1.2 Variation 2: Coupling via Lipshutz Cuprates 835
45.29.2.1.1.3 Variation 3: Coupling of Arylstannanes Using Copper(II) Nitrate 836
45.29.2.1.2 Method 2: Construction of the Benzene Ring by Elimination 837
45.30 Product Class 30: Conjugated Polyenes, Including Cyclic Polyenes That Are Not Fully Conjugated 842
45.30.1 Product Subclass 1: Open-Chain Noncarotenoid Conjugated Polyenes 843
45.30.1.1 Synthesis of Product Subclass 1 843
45.30.1.1.1 Method 1: Palladium-Catalyzed Coupling Reactions 844
45.30.1.1.1.1 Variation 1: Stille Coupling 844
45.30.1.1.1.2 Variation 2: Negishi Coupling 848
45.30.1.1.1.3 Variation 3: Suzuki Coupling 849
45.30.1.1.1.4 Variation 4: Sonogashira Coupling 851
45.30.1.1.1.5 Variation 5: Heck Reaction 853
45.30.1.1.1.6 Variation 6: Silicon-Based Coupling 854
45.30.1.1.1.7 Variation 7: Homocoupling 855
45.30.1.1.2 Method 2: Rhodium-Catalyzed Coupling Reactions 856
45.30.1.1.3 Method 3: Nickel-Catalyzed Coupling Reactions 857
45.30.1.1.4 Method 4: Reductive Alkenation of Carbonyl Compounds 858
45.30.1.1.5 Method 5: Sulfone-Mediated Alkenation 858
45.30.1.1.5.1 Variation 1: Julia Alkenation 859
45.30.1.1.5.2 Variation 2: Julia--Kocienski Alkenation 861
45.30.1.1.6 Method 6: Wittig and Related Reactions 862
45.30.1.1.6.1 Variation 1: Wittig Reaction 863
45.30.1.1.6.2 Variation 2: Horner--Wadsworth--Emmons Modification 864
45.30.1.1.7 Method 7: Coupling with Vinylic Organolithium Reagents 865
45.30.1.1.8 Method 8: Lewis Acid Promoted Coupling Reactions 867
45.30.1.1.9 Method 9: Ramberg--Bäcklund Rearrangement 869
45.30.1.1.10 Method 10: Oxidative Ring-Fragmentation Reactions 870
45.30.1.1.11 Method 11: Cyclopropyl Carbinol Rearrangement 872
45.30.1.2 Applications of Product Subclass 1 in Organic Synthesis 872
45.30.1.2.1 Method 1: Lewis Acid Catalyzed Cycloisomerization of Hexatriene 872
45.30.1.2.2 Method 2: Thermal Electrocyclization of Hexatriene 873
45.30.2 Product Subclass 2: Carotenoid Compounds 874
45.30.2.1 Synthesis of Product Subclass 2 874
45.30.2.1.1 Method 1: Palladium-Catalyzed Coupling Reactions 875
45.30.2.1.1.1 Variation 1: Stille Coupling 875
45.30.2.1.1.2 Variation 2: Negishi Coupling 878
45.30.2.1.1.3 Variation 3: Suzuki Coupling 879
45.30.2.1.2 Method 2: Reductive Alkenation of Carbonyl Compounds 881
45.30.2.1.3 Method 3: Sulfone-Mediated Alkenation 882
45.30.2.1.3.1 Variation 1: Julia Alkenation 882
45.30.2.1.3.2 Variation 2: Julia--Kocienski Alkenation 884
45.30.2.1.3.3 Variation 3: Reaction with 3-Sulfolenes 886
45.30.2.1.3.4 Variation 4: Double Elimination Reaction 887
45.30.2.1.4 Method 4: Wittig Reaction 889
45.30.2.1.5 Method 5: Extended Knoevenagel Condensation 891
45.30.2.1.6 Method 6: Ramberg--Bäcklund Rearrangement 893
45.30.3 Product Subclass 3: Cycloheptatrienes 895
45.30.3.1 Synthesis of Product Subclass 3 895
45.30.3.1.1 Method 1: Transition-Metal-Mediated [3 + 2 + 2]-Cycloaddition Reaction 895
45.30.3.1.1.1 Variation 1: Palladium-Catalyzed Cycloaddition 895
45.30.3.1.1.2 Variation 2: Nickel-Mediated Cycloaddition 896
45.30.3.1.2 Method 2: Rhodium-Catalyzed Addition of Diazo Compounds 898
45.30.3.1.3 Method 3: Addition to a Tropylium Salt 899
45.30.3.1.3.1 Variation 1: Using Organolithium Reagents 899
45.30.3.1.3.2 Variation 2: Using Hetero Nucleophiles 900
45.30.3.1.3.3 Variation 3: Using Reactive Alkenes 903
45.30.3.1.3.4 Variation 4: Using Reactive Alkanes 905
45.30.3.1.4 Method 4: Ring-Expansion Reactions 906
45.31 Product Class 31: Macromolecular Conjugated Polyenes 914
45.31.1 Product Subclass 1: Polyacetylene 914
45.31.1.1 Synthesis of Product Subclass 1 914
45.31.1.1.1 Method 1: Polymerization by the Shirakawa Method 914
45.31.1.1.2 Method 2: Polymerization by the Naarmann Method 915
45.31.2 Product Subclass 2: Monosubstituted Aromatic Acetylene Polymers 916
45.31.2.1 Synthesis of Product Subclass 2 916
45.31.2.1.1 Method 1: Polymerization Using Rhodium Catalysts 916
45.31.2.1.2 Method 2: Polymerization Using Tungsten Catalysts 919
45.31.2.1.3 Method 3: Polymerization Using Molybdenum Catalysts 921
45.31.3 Product Subclass 3: Monosubstituted Aliphatic Acetylene Polymers 922
45.31.3.1 Synthesis of Product Subclass 3 922
45.31.3.1.1 Method 1: Polymerization Using Rhodium Catalysts 922
45.31.4 Product Subclass 4: Disubstituted Aromatic Acetylene Polymers 925
45.31.4.1 Synthesis of Product Subclass 4 925
45.31.4.1.1 Method 1: Polymerization Using Tantalum Catalysts 925
45.31.4.1.2 Method 2: Polymerization Using Molybdenum Catalysts 927
45.31.5 Product Subclass 5: Disubstituted Aliphatic Acetylene Polymers 928
45.31.5.1 Synthesis of Product Subclass 5 929
45.31.5.1.1 Method 1: Polymerization Using Tantalum Catalysts 929
45.31.5.1.2 Method 2: Polymerization Using Molybdenum Catalysts 930
Keyword Index 934
Author Index 990
Abbreviations 1028

Erscheint lt. Verlag 14.5.2014
Verlagsort Stuttgart
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Technik
Schlagworte Aromatic Ring Assemblies • AROMATIC RI NG ASSEMBLIES • benzene • Chemie • Chemische Synthese • chemistry of organic compound • chemistry organic reaction • chemistry reference work • C HEMISTRY REFERENCE WORK • chemistry synthetic methods • compound functional group • compound organic synthesis • compounds with all-carbon functions • conjugated polyenes • Mechanism • methods in organic synthesis • methods peptide synthesis • Organic Chemistry • organic chemistry functional groups • organic chemistry reactions • organic chemistry review • organic chemistry synthesis • ORGANIC CHEM ISTRY SYNTHESIS • organic method • organic reaction • organic reaction mechanism • ORGANI C REACTION MECHANISM • Organic Syntheses • organic synthesis • organic synthesis reference work • Organisch-chemische Synthese • Organische Chemie • Peptide synthesis • Polycyclic Aromatic Hydrocarbons • Practical • practical organic chemistry • Reactions • reference work • Review • review organic synthesis • review synthetic methods • REVIEW SYNTHE TIC METHODS • Synthese • Synthetic chemistry • Synthetic Methods • Synthetic Organic Chemistry • synthetic transformation
ISBN-10 3-13-178441-5 / 3131784415
ISBN-13 978-3-13-178441-4 / 9783131784414
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Wasserzeichen)
Größe: 32,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Basiswissen der Chemie

von Charles E. Mortimer; Ulrich Müller

eBook Download (2019)
Georg Thieme Verlag KG
84,99