Science of Synthesis: Houben-Weyl Methods of Molecular Transformations Vol. 4 (eBook)
1060 Seiten
Georg Thieme Verlag KG
978-3-13-177931-1 (ISBN)
Ian Fleming
Science of Synthesis – Volume 4: Compounds of Group 15 (As, Sb, Bi) and Silicon Compounds 1
Title page 3
Imprint 5
Preface 6
Volume Editor's Preface 7
Overview 10
Table of Contents 14
Introduction 48
4.1 Product Class 1: Arsenic Compounds 60
4.1.1 Product Subclass 1: Triorganoarsenic(III) and Related Compounds 60
Synthesis of Product Subclass 1 60
4.1.1.1 Method 1: Alkylation of Metallic Arsenides 60
4.1.1.2 Method 2: Transmetalation from Other Organometallic Reagents 61
4.1.1.2.1 Variation 1: From Grignard Reagents and Arsenic(III) Halides 61
4.1.1.2.2 Variation 2: From Organolithium Reagents and Arsenic(III) Halides 62
4.1.1.3 Method 3: Direct Synthesis from Metallic Arsenic 63
4.1.1.4 Method 4: Reduction of Arsenic(V) Oxides 63
4.1.1.5 Method 5: Addition of Arsines to Multiple Bonds 64
4.1.1.6 Method 6: Cleavage of Tetraorganoarsenic Derivatives 65
Applications of Product Subclass 1 in Organic Synthesis 65
4.1.1.7 Method 7: Triorganoarsenic(III) Derivatives as Halogen Equivalents 65
4.1.1.7.1 Variation 1: Nucleophilic Halovinylation 66
4.1.1.7.2 Variation 2: Carbonyl Haloalkenation 66
4.1.2 Product Subclass 2: Diorganoarsenic(III) and Related Compounds 66
Synthesis of Product Subclass 2 67
4.1.2.1 Method 1: Transmetalation from Other Organometallic Reagents 67
4.1.2.1.1 Variation 1: From Grignard Reagents and Arsenic(III) Halides 67
4.1.2.1.2 Variation 2: From Organolithium Reagents and Arsenic(III) Halides 67
4.1.2.2 Method 2: Synthesis from Elemental Arsenic 68
4.1.2.3 Method 3: Thermolysis of Arsenic(V) Derivatives 68
4.1.2.4 Method 4: Redistribution Reactions 69
4.1.3 Product Subclass 3: Monoorganoarsenic(III) and Related Compounds 69
Synthesis of Product Subclass 3 70
4.1.3.1 Method 1: Transmetalation from Other Organometallic Reagents 70
4.1.3.1.1 Variation 1: From Grignard Reagents and Arsenic(III) Derivatives 70
4.1.3.1.2 Variation 2: From Organolithium Reagents and Arsenic(III) Derivatives 70
4.1.3.2 Method 2: Reduction of Arsonic Acids 71
4.1.3.3 Method 3: Redistribution Reactions 71
4.1.4 Product Subclass 4: Pentaorganoarsenic(V) and Related Compounds 72
Synthesis of Product Subclass 4 72
4.1.4.1 Method 1: Transmetalation from Other Organometallic Reagents 72
4.1.4.2 Method 2: Reaction Of Arsinimines with Organolithium Reagents 73
4.1.5 Product Subclass 5: Arsonium Ylides and Related Compounds 73
Synthesis of Product Subclass 5 73
4.1.5.1 Method 1: From Arsonium Salts by the “Salt Method” 74
4.1.5.2 Method 2: From Reaction with Arsenic(V) Dihalides 74
4.1.5.3 Method 3: From Arsine Oxides 75
4.1.5.4 Method 4: From Diazonium Salts 75
4.1.5.5 Method 5: From Other Ylides by “Transylidation” 76
Applications of Product Subclass 5 in Organic Synthesis 77
4.1.5.6 Method 6: Reactions of Stabilized Arsonium Ylides with Nonconjugated Carbonyl Compounds 77
4.1.5.6.1 Variation 1: Reactions of Stabilized Arsonium Ylides with a,ß-Unsaturated Carbonyl Compounds 79
4.1.5.7 Method 7: Reactions of Semistabilized Arsonium Ylides with Carbonyl Compounds 79
4.1.5.8 Method 8: Reactions of Reactive Arsonium Ylides with Carbonyl Compounds 83
4.1.6 Product Subclass 6: Tetraorganoarsenic(V) and Related Compounds 84
Synthesis of Product Subclass 6 84
4.1.6.1 Method 1: By Alkylation of Organoarsenic(III) Derivatives 84
4.1.6.2 Method 2: Reaction of Arsine Oxides with Grignard Reagents 85
4.1.7 Product Subclass 7: Triorganoarsenic(V) and Related Compounds 85
Synthesis of Product Subclass 7 85
4.1.7.1 Method 1: Oxidation of Triorganoarsenic(III) Compounds 85
4.1.7.1.1 Variation 1: Reaction With Halogens 86
4.1.7.1.2 Variation 2: Reaction with “Halogen Substitute” Compounds 86
4.1.7.1.3 Variation 3: Reaction with Active Oxygen Compounds 87
Applications of Product Subclass 7 in Organic Synthesis 88
4.1.7.2 Method 2: Triorganoarsenic(V) Derivatives as Halogen Equivalents 88
4.1.8 Product Subclass 8: Diorganoarsenic(V) and Related Compounds 88
Synthesis of Product Subclass 8 89
4.1.8.1 Method 1: From Diazonium Salts: The Bart Reaction 89
4.1.8.2 Method 2: From Alkaline Alkyl Arsonate Salts: The Meyer Reaction 89
4.1.9 Product Subclass 9: Monoorganoarsenic(V) and Related Compounds 90
Synthesis of Product Subclass 9 90
4.1.9.1 Method 1: The Bart Reaction 90
4.1.9.1.1 Variation 1: The Scheller Modification of the Bart Reaction 91
4.1.9.2 Method 2: The Béchamp Reaction 92
4.1.9.3 Method 3: The Meyer Reaction 92
4.1.9.3.1 Variation 1: The Rosenmund Reaction 93
4.1.9.4 Method 4: Oxidative Hydrolysis 93
4.2 Product Class 2: Antimony Compounds 100
4.2.1 Product Subclass 1: Tertiary Stibines 100
Synthesis of Product Subclass 1 100
4.2.1.1 Method 1: From Alkali Metal Antimonides 100
4.2.1.1.1 Variation 1: Cleavage of an Aryl--Antimony Bond 101
4.2.1.1.2 Variation 2: Cleavage of an Alkyl--Antimony Bond 101
4.2.1.1.3 Variation 3: Cleavage of a Halo--Antimony Bond 102
4.2.1.2 Method 2: By Transmetalation 102
4.2.1.2.1 Variation 1: Formation of Symmetrical Tertiary Stibines Using Grignard Reagents 102
4.2.1.2.2 Variation 2: Formation of Nonsymmetrical Tertiary Stibines Using Organolithiums 103
Applications of Product Subclass 1 in Organic Synthesis 104
4.2.1.3 Method 3: Alkenation Reactions 104
4.2.1.3.1 Variation 1: Wittig-type Alkenation of Aldehydes Mediated by Tributylstibine 104
4.2.1.3.2 Variation 2: Alkenation of Aldehydes with Dibromomalonates 104
4.2.1.4 Method 4: Palladium-Catalyzed Processes 105
4.2.2 Product Subclass 2: Di- and Monoorganostibines 105
Synthesis of Product Subclass 2 105
4.2.2.1 Method 1: By Cleavage of Distibines 106
4.2.2.2 Method 2: By Redistribution Reactions 106
4.2.2.2.1 Variation 1: Reaction of Antimony(III) Halides with Triarylstibines 106
4.2.2.2.2 Variation 2: Reaction of Antimony(III) Halides with Halostibines 107
4.2.2.3 Method 3: By Transmetalation 107
4.2.2.3.1 Variation 1: From Tetraalkyllead 107
4.2.2.3.2 Variation 2: From Organostannanes 108
4.2.2.4 Method 4: From .5-Stibanes 108
4.2.2.4.1 Variation 1: Thermolysis of Dihalotriorgano-.5-stibanes 108
4.2.2.4.2 Variation 2: Thermolysis of Trihalodiorgano-.5-stibanes 109
4.2.2.4.3 Variation 3: Reduction of .5-Stibanes 109
4.2.3 Product Subclass 3: Pentaorgano-.5-stibanes 109
Synthesis of Product Subclass 3 109
4.2.3.1 Method 1: Synthesis of Symmetrical Pentaorgano-.5-stibanes 110
4.2.3.2 Method 2: Synthesis of Unsymmetrical Pentaorgano-.5-stibanes 110
Applications of Product Subclass 3 in Organic Synthesis 110
4.2.3.3 Method 3: Reaction of .5-Stibanes with Electrophiles 110
4.2.4 Product Subclass 4: Stibonium Ylides and Stibimines 111
Synthesis of Product Subclass 4 111
4.2.4.1 Method 1: Use of Diazo Compounds 111
4.2.4.2 Method 2: From Sulfonyl Azides 112
Applications of Product Subclass 4 in Organic Synthesis 112
4.2.4.3 Method 3: Wittig-type Reactions of Stibonium Ylides 112
4.2.5 Product Subclass 5: Tetraorgano-.5-stibanes 113
Synthesis of Product Subclass 5 113
4.2.5.1 Method 1: By Cleavage of Pentaorgano-.5-stibanes 113
4.2.5.2 Method 2: From Tertiary Stibines 113
4.2.5.2.1 Variation 1: By Alkylation of Trialkylstibines 113
4.2.5.2.2 Variation 2: By Arylation of Triarylstibines 114
Applications of Product Subclass 5 in Organic Synthesis 114
4.2.5.3 Method 3: Allylation of Aldehydes by .5-Stibanes 114
4.2.6 Product Subclass 6: Triorgano-.5-stibanes 115
Synthesis of Product Subclass 6 115
4.2.6.1 Method 1: Oxidation of Tertiary Stibines with Bromine 115
Applications of Product Subclass 6 in Organic Synthesis 115
4.2.6.2 Method 2: Formation of Diketones 115
4.2.7 Product Subclass 7: Di- and Monoorgano-.5-stibanes 116
Synthesis of Product Subclass 7 116
4.2.7.1 Method 1: By Transmetalation 116
4.2.7.2 Method 2: From Tertiary Stibines 117
4.2.7.2.1 Variation 1: Cleavage of Triphenylstibine 117
4.2.7.2.2 Variation 2: Halogenation of Halodiorganostibines 117
4.2.7.3 Method 3: From Diazonium Salts 117
4.2.7.3.1 Variation 1: Preparation of Unsymmetrical Hydroxystibine Oxides 117
4.2.7.3.2 Variation 2: Preparation of Dihydroxystibine Oxides by the Scheller Reaction 118
4.3 Product Class 3: Bismuth Compounds 124
Synthesis of Product Class 3 124
4.3.1 Product Subclass 1: Alkyl- and Arylbismuthines 124
4.3.1.1 Method 1: From Grignard and Organolithium Reagents 125
4.3.1.2 Method 2: From Alkali Bismuthides 128
4.3.1.3 Method 3: By Transmetalation 128
4.3.1.4 Additional Methods 129
4.3.2 Product Subclass 2: Alkyl- and Arylhalobismuthines 130
4.3.2.1 Method 1: By Bi--C Bond Cleavage and Redistribution Reactions 131
4.3.2.2 Method 2: From Organometallic Reagents 133
4.3.3 Product Subclass 3: Alkyl- and Arylbismuthines Containing Bonds between Bismuth and Group 15 or 16 Elements 134
4.3.3.1 Method 1: From Halobismuthines 135
4.3.3.2 Method 2: From Alkoxybismuthines 136
4.3.3.3 Method 3: By Cleavage of Bi--C Bond(s) by Acidic Compounds 136
4.3.3.4 Additional Methods 137
4.3.4 Product Subclass 4: Dibismuthines and Dibismuthenes 138
4.3.4.1 Method 1: From Tertiary Bismuthines 140
4.3.4.2 Method 2: From Halodiorganobismuthines 140
4.3.5 Product Subclass 5: Organobismuth Compounds with Bismuth--Transition Metal Bonds 141
4.3.6 Product Subclass 6: Alkoxy- and Hydroxybismuthine Oxides 141
4.3.7 Product Subclass 7: Dihalotriorganobismuth(V) and Related Compounds 142
4.3.7.1 Method 1: Oxidative Addition of Halogen or Halogen Equivalent to Triorganobismuthines 143
4.3.7.2 Method 2: Oxidation of Bismuthines with Ozone, Peroxy Acids, and Other Oxygen Equivalents 144
4.3.7.3 Method 3: By Metathetical Reactions 144
4.3.8 Product Subclass 8: Oxybis[triarylhalobismuth(V)] and Related Compounds 145
4.3.9 Product Subclass 9: Bismuthine Imides 146
4.3.9.1 Method 1: From Tertiary Bismuthines 146
4.3.9.2 Method 2: From Triaryldihalobismuth(V) 147
4.3.10 Product Subclass 10: Bismuthine Oxides 147
4.3.11 Product Subclass 11: Bismuthonium Salts 149
4.3.11.1 Method 1: From Pentaarylbismuth(V) Compounds 150
4.3.11.2 Method 2: From Triaryldifluorobismuth(V) 151
4.3.11.3 Method 3: From Tertiary Bismuthines 152
4.3.12 Product Subclass 12: Bismuthonium Ylides 152
4.3.12.1 Method 1: From Tertiary Bismuthines 152
4.3.12.2 Method 2: From Triarylbismuth(V) Compounds 153
4.3.12.3 Method 3: From Bismuthonium Salts 154
4.3.13 Product Subclass 13: Pentaorganobismuth(V) Compounds 154
4.3.14 Product Subclass 14: Hexaorganobismuthates 155
Applications of Product Class 3 in Organic Synthesis 155
4.4 Product Class 4: Silicon Compounds 164
4.4.1 Product Subclass 1: Disilenes 164
Synthesis of Product Subclass 1 166
4.4.1.1 Method 1: Photolysis of Linear Trisilanes 166
4.4.1.2 Method 2: Photolysis of Cyclotrisilanes 167
4.4.1.3 Method 3: Reductive Coupling of Dihalosilanes 168
4.4.1.4 Method 4: Reduction of 1,2-Dihalodisilanes 169
4.4.1.5 Method 5: Photolysis of 2,3-Disilabicyclo[2.2.2]octa-5,7-dienes 170
4.4.1.6 Additional Methods 170
4.4.2 Product Subclass 2: Silenes 172
Synthesis of Product Subclass 2 174
4.4.2.1 Method 1: By Photolysis or Thermolysis of Acylsilanes 174
4.4.2.1.1 Variation 1: Photolysis of Acylsilanes 174
4.4.2.1.2 Variation 2: Thermolysis of Acylpolysilanes 175
4.4.2.2 Method 2: By 1,2-Salt Elimination from a-Lithiated Silanes 175
4.4.2.2.1 Variation 1: By Metalation of the Ca--H Bond of Alkylsilanes 176
4.4.2.2.2 Variation 2: By Metalation of the C--Br Bond of a-Bromoalkylsilanes 177
4.4.2.2.3 Variation 3: From Halo(vinyl)silanes 177
4.4.2.3 Method 3: Sila-Peterson Reactions 178
4.4.2.3.1 Variation 1: From the Addition of Silyl Anions to Ketones 178
4.4.2.3.2 Variation 2: From the Addition of Organolithium Reagents to Acylpolysilanes 179
4.4.2.3.3 Variation 3: By the Deprotonation of a-Hydroxysilanes 179
4.4.2.4 Additional Methods 180
4.4.3 Product Subclass 3: Silylenes 182
Synthesis of Product Subclass 3 184
4.4.3.1 Method 1: Reduction of Dihalosilanes 184
Applications of Product Subclass 3 in Organic Synthesis 188
4.4.3.2 Method 2: Insertion Reactions 188
4.4.3.3 Method 3: Addition Reactions 194
4.4.3.3.1 Variation 1: To Dienes 194
4.4.3.3.2 Variation 2: To Aldehydes, Ketones, and Imines 195
4.4.3.3.3 Variation 3: To Alkynes and Nitriles 199
4.4.3.3.4 Variation 4: To Isocyanides and Azides 199
4.4.3.3.5 Variation 5: To Transition Metals 200
4.4.4 Product Subclass 4: Silyl Hydrides 206
Synthesis of Product Subclass 4 207
4.4.4.1 Method 1: From Inorganic Silanes 207
4.4.4.2 Method 2: From Aryl- and Alkylsilyl Hydrides 210
4.4.4.3 Method 3: From Silyl Halides 215
4.4.4.4 Method 4: From Silyl Ethers 217
4.4.4.5 Methods 5: Additional Methods 218
Applications of Product Subclass 4 in Organic Synthesis 219
4.4.4.6 Method 6: Hydrosilylation of Alkenes, Alkynes, and Related Compounds 219
4.4.4.7 Method 7: Silyl Hydrides as Reducing Reagents 223
4.4.5 Product Subclass 5: Disilanes 234
Synthesis of Product Subclass 5 235
4.4.5.1 Method 1: Via Coupling of Hydrosilanes 235
4.4.5.1.1 Variation 1: By Use of Transition Metal Catalysts 235
4.4.5.1.2 Variation 2: By Photolysis of Alkylhydrosilanes in the Presence of Mercury 236
4.4.5.2 Method 2: Via Photolysis of Organopolysilanes in the Presence of Hydrosilanes 237
4.4.5.3 Method 3: Via Coupling of (Organosilyl)alkali Metal Salts with Halosilanes 237
4.4.5.4 Method 4: Via Coupling of Halosilanes Using Metals or Metal Salts 238
4.4.5.4.1 Variation 1: By Use of Alkali Metals 239
4.4.5.4.2 Variation 2: By Use of Magnesium Metal 239
4.4.5.4.3 Variation 3: By Use of Lithium Naphthalenide 240
4.4.5.4.4 Variation 4: By Use of Samarium(II) Iodide 241
4.4.5.4.5 Variation 5: By Use of Potassium--Graphite Laminate (C8K) 241
4.4.5.5 Method 5: Via Electrochemical Reduction of Halosilanes 242
4.4.5.6 Method 6: Via Photolysis of Organopolysilanes in the Presence of Trapping Agents 243
4.4.5.6.1 Variation 1: In the Presence of Ketones 243
4.4.5.6.2 Variation 2: In the Presence of Functionalized Alkenes 244
4.4.5.7 Method 7: From Halodisilanes and Organometallic Reagents 245
4.4.5.8 Additional Methods 245
Applications of Product Subclass 5 in Organic Synthesis 246
4.4.6 Product Subclass 6: Silyltin Reagents 252
Synthesis of Product Subclass 6 252
4.4.6.1 Method 1: Synthesis of Silyltin Reagents 252
Applications of Product Subclass 6 in Organic Synthesis 254
4.4.7 Product Subclass 7: Silylboron Reagents 258
Synthesis of Product Subclass 7 258
4.4.7.1 Method 1: Synthesis of Silylboron Reagents 258
4.4.7.1.1 Variation 1: Synthesis of (Dimethylphenylsilyl)(pinacol)borane from Dimethylphenylsilyllithium and Pinacolborane 260
4.4.7.1.2 Variation 2: Synthesis of (Dimethylphenylsilyl)(pinacol)borane from Dimethylphenylsilyllithium and Isopropoxy(pinacol)borane 261
4.4.7.1.3 Variation 3: Synthesis of Lithium Triethyl(dimethylphenylsilyl)borate 261
Applications of Product Subclass 7 in Organic Synthesis 262
4.4.8 Product Subclass 8: Silylaluminum Reagents 266
Synthesis of Product Subclass 8 266
4.4.8.1 Method 1: Tris(trimethylsilyl)aluminum from Bis(trimethylsilyl)mercury(II) 266
4.4.8.1.1 Variation 1: Tris(trimethylsilyl)aluminum from Chlorotrimethylsilane and Aluminum, Lithium, and Mercury Metals 267
4.4.8.2 Additional Methods 268
Applications of Product Subclass 8 in Organic Synthesis 268
4.4.9 Product Subclass 9: Silylzinc Reagents 272
Synthesis of Product Subclass 9 272
4.4.9.1 Method 1: From a Triorganosilyl Anion Source and Zinc(II) Reagents 272
4.4.9.1.1 Variation 1: Dialkyl(triorganosilyl)zincate Reagents from an Alkylmetal, Triorganosilylmetal Reagents, and Zinc(II) Salts 274
Applications of Product Subclass 9 in Organic Synthesis 274
4.4.10 Product Subclass 10: Silylcopper Reagents 278
Synthesis of Product Subclass 10 278
4.4.10.1 Method 1: Synthesis of Triorganosilylcopper(I) Reagents 278
4.4.10.2 Method 2: Synthesis of Mixed Alkyl(triorganosilyl)copper(I) Reagents 279
Applications of Product Subclass 10 in Organic Synthesis 280
4.4.11 Product Subclass 11: Silyllithium Reagents 284
Synthesis of Product Subclass 11 285
4.4.11.1 Method 1: By Lithiation of Halotriorganosilanes 285
4.4.11.1.1 Variation 1: Using Lithium Metal 285
4.4.11.1.2 Variation 2: Using an Alkyllithium Reagent 286
4.4.11.2 Method 2: Via Si--Si Bond Cleavage 286
4.4.11.2.1 Variation 1: Reductive Cleavage Using Lithium Metal 287
4.4.11.2.2 Variation 2: Nucleophilic Cleavage Using an Alkyllithium Reagent 287
4.4.11.3 Method 3: Via Si--Sn Bond Cleavage 288
4.4.11.4 Method 4: From Bis(triorganosilyl)mercury(II) Compounds 289
Applications of Product Subclass 11 in Organic Synthesis 289
4.4.12 Product Subclass 12: Haloorganosilanes 294
Synthesis of Product Subclass 12 296
4.4.12.1 Method 1: Conversion of Hydridoorganosilanes into Haloorganosilanes 296
4.4.12.1.1 Variation 1: By Reaction with Copper(II) Halides 296
4.4.12.1.2 Variation 2: By Reaction with Hydrogen Halides, Haloalkanes, or Haloarenes 297
4.4.12.1.3 Variation 3: By Reaction with Reactive Organic Halides in the Presence of Tertiary Amines 298
4.4.12.1.4 Variation 4: By Reaction with Dihalogens 299
4.4.12.2 Method 2: Halogenolysis of Disilanes 299
4.4.12.3 Method 3: Halogenolysis of Si--C Bonds 299
4.4.12.4 Method 4: Halogen Exchange 301
4.4.12.4.1 Variation 1: Generation In Situ 302
4.4.12.5 Method 5: Conversion of Disiloxanes into Haloorganosilanes 302
4.4.12.6 Method 6: Direct Synthesis from Silicon and Organic Halides 303
4.4.12.7 Method 7: Hydrosilylation of Unsaturated Bonds with Halohydridosilanes 304
4.4.12.8 Method 8: Organometallic Exchange of Halogen in a Halosilane To Give a New Halosilane 305
Applications of Product Subclass 12 in Organic Synthesis 307
4.4.12.9 Fluoroorganosilanes 307
4.4.12.10 Chloroorganosilanes 308
4.4.12.11 Bromoorganosilanes 309
4.4.12.12 Iodoorganosilanes 310
4.4.13 Product Subclass 13: Silyl Diethers 316
Synthesis of Product Subclass 13 316
4.4.13.1 Method 1: Synthesis of Symmetrical Acyclic Silyl Diethers 316
4.4.13.1.1 Variation 1: From Silanes 317
4.4.13.1.2 Variation 2: From Dichlorosilanes 318
4.4.13.2 Method 2: Synthesis of Unsymmetrical Acyclic Silyl Diethers 320
4.4.13.2.1 Variation 1: From Alkoxy(halo)silanes 320
4.4.13.2.2 Variation 2: From Chlorosilyl Pent-4-enyl Ethers 323
4.4.13.3 Method 3: Synthesis of Cyclic Silyl Diethers 324
4.4.13.3.1 Variation 1: From Silanes 324
4.4.13.3.2 Variation 2: From Dichlorosilanes or Silyl Trifluoromethanesulfonates 325
4.4.13.3.3 Variation 3: From Hexamethylcyclotrisilazane 327
Applications of Product Subclass 13 in Organic Synthesis 328
4.4.13.4 Method 4: Intramolecular Reactions Using Silicon-Tethered Reactants 328
4.4.13.5 Method 5: Standard Protection of Alcohols 335
4.4.14 Product Subclass 14: Silyl Esters 340
Synthesis of Product Subclass 14 342
4.4.14.1 Silyl Sulfates and Trifluoromethanesulfonates 342
4.4.14.1.1 Method 1: Polymer-Supported Silyl Trifluoromethanesulfonates 342
4.4.14.1.2 Method 2: Reaction of Tetrasubstituted Silanes with Trifluoromethanesulfonic Acid 342
4.4.14.1.2.1 Variation 1: Using Trisubstituted Allylsilanes 343
4.4.14.1.3 Method 3: Reaction of Trialkylchlorosilanes with Trifluoromethanesulfonic Acid 343
4.4.14.1.4 Method 4: Reaction of Trialkylchlorosilanes with Sulfuric Acid 344
4.4.14.2 Silyl Phosphates 344
4.4.14.2.1 Method 1: Reaction of Bis(trimethylsilyl) Ether with Phosphorus Pentoxide 344
4.4.14.3 Silyl Carboxylates 345
4.4.14.3.1 Method 1: Reaction of Hydrosilanes with Carboxylic Acids 345
4.4.14.3.2 Method 2: Reaction of Trialkylchlorosilanes with Carboxylic Acids 346
4.4.14.3.2.1 Variation 1: With Sterically Hindered Trialkylchlorosilanes 347
4.4.14.3.3 Method 3: Reaction of Carboxylic Acids with Trialkylsilyl Trifluoromethanesulfonates 347
4.4.14.3.3.1 Variation 1: With Trialkylsilyl Trifluoromethanesulfonates Formed In Situ 348
4.4.14.3.4 Method 4: Reaction of Carboxylic Acids with N,N'-Bis(trimethylsilyl)urea 349
4.4.14.4 Additional Methods 349
4.4.15 Product Subclass 15: Silyl Imidic Esters (Silylimino Ethers) 352
Synthesis of Product Subclass 15 353
4.4.15.1 Method 1: Silylation of Amide Derivatives 353
4.4.15.1.1 Variation 1: With Chlorosilanes 353
4.4.15.1.2 Variation 2: With Silyl Triflates 354
4.4.15.1.3 Variation 3: With Trimethylsilyldimethylamine 355
4.4.15.1.4 Variation 4: With Hexamethyldisilazane 355
4.4.15.1.5 Variation 5: Silylamide-Based Silylation 356
4.4.15.2 Method 2: Catalytic Silylation with Trimethyl(pentafluorophenyl)silane 357
4.4.15.3 Method 3: Coupling of Alkali Metal Hexamethyldisilazanides with Acid Derivatives 358
4.4.15.3.1 Variation 1: With Acyl Chlorides 358
4.4.15.3.2 Variation 2: With Esters 359
4.4.15.4 Method 4: Acylation of Trimethylsilylhydroxylamines and Bis(trimethylsilyl)carbodiimide 359
4.4.15.4.1 Variation 1: With Acyl Chlorides 359
4.4.15.4.2 Variation 2: With Ketenes 360
4.4.15.5 Method 5: Insertion of Formaldehyde into the Si--N Bond of O,N-Bis(silyl)amides 361
4.4.15.6 Additional Methods 361
4.4.16 Product Subclass 16: Silyl Enol Ethers 364
Synthesis of Product Subclass 16 377
4.4.16.1 Method 1: From Carbonyl Compounds, Bases, and Electrophilic Silylating Agents 377
4.4.16.1.1 Variation 1: Synthesis of Silyl Enol Ethers of Aldehydes and Ketones 378
4.4.16.1.2 Variation 2: Synthesis of Silyl Ketene Acetals and Related Compounds 383
4.4.16.1.3 Variation 3: Synthesis of Siloxybutadienes 388
4.4.16.1.4 Variation 4: Chemoselective Synthesis of Silyl Enol Ethers 390
4.4.16.1.5 Variation 5: Enantioselective Synthesis of Silyl Enol Ethers 391
4.4.16.1.6 Variation 6: Synthesis of Polymer-Supported Silyl Enol Ethers 392
4.4.16.2 Method 2: From a,ß-Unsaturated Carbonyl Compounds by Reductive Silylation 393
4.4.16.2.1 Variation 1: By Metal Reduction and Subsequent Enolate Trapping 393
4.4.16.2.2 Variation 2: By Conjugate Addition of Nucleophiles and Subsequent Enolate Trapping 394
4.4.16.2.3 Variation 3: By Hydrosilylation 396
4.4.16.3 Method 3: From Diesters in the Acyloin Condensation 397
4.4.16.4 Method 4: From a-Halo Carbonyl Compounds by Reductive Silylation 397
4.4.16.5 Method 5: From Alkenes by Hydrosilylation in the Presence of Carbon Monoxide 398
4.4.16.6 Method 6: From Acylsilanes by Nucleophilic Addition and Brook Rearrangement 399
4.4.16.6.1 Variation 1: With Alkenyl- or Alkynylmetals 399
4.4.16.6.2 Variation 2: With Nucleophilic Reagents Having an a-Leaving Group 400
4.4.16.7 Method 7: From Silyl Esters by Alkylidenation 401
4.4.16.8 Method 8: Rearrangements of Silyl Ethers 402
4.4.16.8.1 Variation 1: Via Rearrangement of ß-Siloxy Carbenoids 402
4.4.16.8.2 Variation 2: Via Isomerization of Allyl and Propargyl Silyl Ethers 402
4.4.16.8.3 Variation 3: Via Rearrangement of Silyl Cyclopropyl Ethers 403
4.4.16.9 Method 9: By Oxidation of Vinyllithiums 404
4.4.16.10 Method 10: From Ketenes by Haloalkylsilane Trapping of Lithium Enolates 404
4.4.16.11 Method 11: Interconversion of Silyl Enol Ethers 405
4.4.16.11.1 Variation 1: Introduction of Nitrogen-Based Functional Groups at the a-Position 405
4.4.16.11.2 Variation 2: Introduction of Nitrogen-Based Functional Groups at the ß-Position 405
4.4.16.11.3 Variation 3: Ene-like Reactions of Silyl Enol Ethers with Aldehydes 406
4.4.16.11.4 Variation 4: Alkylation and Arylation of 2-Siloxyallyl Halides 407
4.4.16.11.5 Variation 5: Isomerization of Silyl Enol Ethers 407
4.4.16.11.6 Variation 6: Conversion of Trimethylsilyl Enol Ethers into Trichlorosilyl Enol Ethers 408
4.4.16.12 Additional Methods 408
4.4.17 Product Subclass 17: Silyl Ethers 418
4.4.17.1 Trimethylsilyl Ethers 419
Formation 419
4.4.17.1.1 Method 1: Silylation of Alcohols with Chlorotrimethylsilane 419
4.4.17.1.2 Method 2: Silylation of Alcohols with Trimethylsilyl Trifluoromethanesulfonate 420
4.4.17.1.3 Method 3: Silylation of Alcohols with Trimethylsilyl Cyanide 420
4.4.17.1.4 Method 4: Silylation of Alcohols with N,O-Bis(trimethylsilyl)acetamide 421
Cleavage 422
4.4.17.1.5 Method 5: Cleavage of Trimethylsilyl Ethers with Acidic Reagents 422
4.4.17.1.6 Method 6: Cleavage of Trimethylsilyl Ethers under Basic Conditions 423
4.4.17.2 Triethylsilyl Ethers 424
Formation 424
4.4.17.2.1 Method 1: Silylation of Alcohols with Chlorotriethylsilane 424
4.4.17.2.1.1 Variation 1: With Chlorotriethylsilane in Pyridine 425
4.4.17.2.1.2 Variation 2: With Chlorotriethylsilane in the Presence of 4-(Dimethylamino)pyridine 426
4.4.17.2.2 Method 2: Silylation of Alcohols with Triethylsilyl Trifluoromethanesulfonate 427
Cleavage 427
4.4.17.2.3 Method 3: Cleavage of Triethylsilyl Ethers under Acidic Conditions 427
4.4.17.2.3.1 Variation 1: In the Presence of 4-Toluenesulfonic Acid 428
4.4.17.2.3.2 Variation 2: With Trifluoromethanesulfonic Acid 429
4.4.17.2.4 Method 4: Cleavage of Triethylsilyl Ethers with Tetrabutylammonium Fluoride 429
4.4.17.3 tert-Butyldimethylsilyl Ethers 430
Formation 430
4.4.17.3.1 Method 1: Silylation of Alcohols with tert-Butyldimethylsilyl Chloride 430
4.4.17.3.1.1 Variation 1: In the Presence of 4-(Dimethylamino)pyridine 431
4.4.17.3.1.2 Variation 2: In Dichloromethane 431
4.4.17.3.2 Method 2: Silylation of Alcohols with tert-Butyldimethylsilyl Trifluoromethanesulfonate 432
4.4.17.3.2.1 Variation 1: Selective Silylation of Phenols 433
4.4.17.3.2.2 Variation 2: Selective Silylation of Alcohols 433
4.4.17.3.3 Method 3: Migration of a tert-Butyldimethylsilyl Group from a tert-Butyldimethylsilyl Ether to an Alcohol 434
Cleavage 435
4.4.17.3.4 Method 4: Cleavage of tert-Butyldimethylsilyl Ethers with Tetrabutylammonium Fluoride 435
4.4.17.3.5 Method 5: Cleavage of tert-Butyldimethylsilyl Ethers with Tris(dimethylamino)sulfur (Trimethylsilyl)difluoride 437
4.4.17.3.6 Method 6: Cleavage of tert-Butyldimethylsilyl Ethers under Acidic Conditions 438
4.4.17.3.6.1 Variation 1: With Hydrogen Fluoride--Pyridine Complex 438
4.4.17.3.6.2 Variation 2: With Mineral Acid 439
4.4.17.3.6.3 Variation 3: With Organic Acids 440
4.4.17.3.6.4 Variation 4: With Lewis Acids 442
4.4.17.4 Triisopropylsilyl Ethers 443
Formation 443
4.4.17.4.1 Method 1: Silylation of Alcohols with Triisopropylsilyl Trifluoromethanesulfonate and 2,6-Lutidine 443
4.4.17.4.1.1 Variation 1: With Triisopropylsilyl Trifluoromethanesulfonate in the Presence of 4-(Dimethylamino)pyridine 444
Cleavage 444
4.4.17.4.2 Method 2: Cleavage of Triisopropylsilyl Ethers with Tetrabutylammonium Fluoride 444
4.4.17.4.3 Method 3: Cleavage of Triisopropylsilyl Ethers with Tris(dimethylamino)sulfur (Trimethylsilyl)difluoride 445
4.4.17.4.4 Method 4: Cleavage of Triisopropylsilyl Ethers with Hydrogen Fluoride--Pyridine Complex 446
4.4.17.4.5 Method 5: Cleavage of Triisopropylsilyl Ethers under Acidic Conditions 447
4.4.17.5 tert-Butyldiphenylsilyl Ethers 448
Formation 448
4.4.17.5.1 Method 1: Silylation of Alcohols with tert-Butyldiphenylsilyl Chloride 448
4.4.17.5.1.1 Variation 1: In the Presence of 4-(Dimethylamino)pyridine 449
4.4.17.5.1.2 Variation 2: Using Butyllithium 449
4.4.17.5.2 Method 2: Silylation of Alcohols with tert-Butyldiphenylsilyl Trifluoromethanesulfonate 450
4.4.17.5.3 Method 3: Migration of a tert-Butyldiphenylsilyl Group to an Alcohol 450
Cleavage 451
4.4.17.5.4 Method 4: Cleavage of tert-Butyldiphenylsilyl Ethers with Tetrabutylammonium Fluoride 451
4.4.17.5.5 Method 5: Cleavage of tert-Butyldiphenylsilyl Ethers with Tetrabutylammonium Fluoride in Acetic Acid 453
4.4.17.5.6 Method 6: Cleavage of tert-Butyldiphenylsilyl Ethers with Tris(dimethylamino)sulfur (Trimethylsilyl)difluoride 453
4.4.17.5.7 Method 7: Cleavage of tert-Butyldiphenylsilyl Ethers with Hydrogen Fluoride--Pyridine Complex 454
4.4.17.5.7.1 Variation 1: Cleavage with Hydrogen Fluoride--Triethylamine Complex 455
4.4.17.6 Other Silyl Ethers 456
4.4.18 Product Subclass 18: Silyl Peroxides 460
Synthesis of Product Subclass 18 460
4.4.18.1 Method 1: Synthesis of Silyl Peroxides 460
Applications of Product Subclass 18 in Organic Synthesis 461
4.4.18.2 Method 2: Various Oxidations Using Silyl Peroxides 461
4.4.18.3 Method 3: Synthesis of Alcohols via Silyl Peroxides 463
4.4.18.3.1 Variation 1: Oxidation of Heteroatom-Substituted Organosilicon Compounds 463
4.4.18.3.2 Variation 2: Oxidation of Phenyl-Substituted Organosilicon Compounds 465
4.4.18.3.3 Variation 3: Oxidation of Heteroaromatic-Substituted Organosilicon Compounds 468
4.4.18.3.4 Variation 4: Oxidation of Allyl-Substituted Organosilicon Compounds 469
4.4.18.3.5 Variation 5: Oxidation of Alkyl-Substituted Organosilicon Compounds 469
4.4.19 Product Subclass 19: Silyl Sulfides and Selenides 474
Synthesis of Product Subclass 19 476
4.4.19.1 Method 1: From Hydrogen Sulfide and Aminosilanes 476
4.4.19.2 Method 2: From Thiolates and Halosilanes 477
4.4.19.2.1 Variation 1: From Enethiolates and Halosilanes 478
4.4.19.3 Method 3: From In Situ Generated Selenolates and Halosilanes 479
4.4.19.3.1 Variation 1: From Lithium, Powdered Selenium, and Chlorotrimethylsilane 479
4.4.20 Product Subclass 20: Silyl Azides 482
Synthesis of Product Subclass 20 482
4.4.20.1 Method 1: Synthesis of Silyl Azides by Substitution 482
4.4.20.1.1 Variation 1: From Silyl Halides 482
4.4.20.1.2 Variation 2: From N-Butyltrialkylsilanamines 483
4.4.20.2 Method 2: Synthesis of Silyl Azides by Trans-silylations 483
Applications of Product Subclass 20 in Organic Synthesis 484
4.4.20.3 Method 3: Synthesis of Heterocyclic Compounds Using Silyl Azides 484
4.4.20.3.1 Variation 1: Triazoles 484
4.4.20.3.2 Variation 2: Tetrazoles 485
4.4.20.3.3 Variation 3: Other Heterocycles 485
4.4.20.4 Method 4: Synthesis of Acyl Azides Using Silyl Azides 486
4.4.20.4.1 Variation 1: From Carboxylic Acid Derivatives 486
4.4.20.4.2 Variation 2: From Aldehydes 486
4.4.20.5 Method 5: Synthesis of a-Azido Alcohols Using Silyl Azides 487
4.4.20.6 Method 6: Synthesis of ß-Azido Alcohols Using Silyl Azides 487
4.4.20.6.1 Variation 1: From Epoxides 487
4.4.20.6.2 Variation 2: From 1,2-Diols 490
4.4.20.7 Method 7: Synthesis of ß-Azido Amines Using Silyl Azides 490
4.4.20.8 Method 8: Synthesis of Alkyl Azides Using Silyl Azides 491
4.4.20.8.1 Variation 1: Alkyl Azides 491
4.4.20.8.2 Variation 2: ß-Azido Ketones 492
4.4.20.8.3 Variation 3: Aryl Azides 492
4.4.20.8.4 Variation 4: Miscellaneous 492
4.4.20.9 Method 9: Applications of Silyl Azides in Rearrangement and in Oxidation Reactions 493
4.4.21 Product Subclass 21: Silylamines 498
Synthesis of Product Subclass 21 498
4.4.21.1 Method 1: Reaction of Chlorosilanes with Amines 498
4.4.21.1.1 Variation 1: Preparation of Diethylamino- and Diisopropylamino-Substituted Silane Derivatives 499
4.4.21.1.2 Variation 2: Preparation and ortho-Lithiation of N,N'-Bis[2-(dimethylamino)ethyl]-N,N'-dimethyldiphenylsilanediamine 500
4.4.21.1.3 Variation 3: Reaction of Chloro{2-[chloro(dimethyl)silyl]ethyl}-dimethylsilane with Primary Amines 501
4.4.21.1.4 Variation 4: Reaction of Bis(dimethylsilyl)benzene with Primary Amines 502
4.4.21.2 Method 2: Reaction of Silyl Trichloroacetates with Amines 502
4.4.21.3 Method 3: Reaction of Tris(2-aminoethyl)amines with Tris- and Tetrakis(dimethylamino)silanes 503
4.4.21.4 Method 4: Reaction of Silyllithiums with Amines 504
4.4.21.5 Method 5: Reaction of Hexamethyldisilazane 504
4.4.21.5.1 Variation 1: Preparation and Reaction of N,O-Bis(trimethylsilyl)hydroxylamine 504
4.4.21.5.2 Variation 2: Preparation of N,O-Bis(trimethylsilyl) Sulfamate 505
4.4.21.5.3 Variation 3: Monosilylation of Anilines 506
4.4.21.5.4 Variation 4: Preparation and Reaction of Lithium N,N-Bis(trimethylsilyl)(aminomethyl)acetylide 506
4.4.21.5.5 Variation 5: Preparation of N-Silylaldimines 508
4.4.21.5.6 Variation 6: Preparation of N,N,N'-Tris(trimethylsilyl)amidines 508
4.4.21.6 Method 6: Preparation of 1-Aza-2-silacyclobutanes 509
4.4.21.6.1 Variation 1: Aza-Brook Rearrangement of (a-Silylallyl)amines to N-Silylenamines 509
4.4.21.7 Method 7: Preparation and Reaction of Aminosilyl Anions 510
4.4.21.8 Method 8: Reaction of 1-(Trimethylsilyl)-1H-1,2,3-benzotriazole 511
4.4.21.8.1 Variation 1: Reaction of 2-Aza-1,3-dienes with Trimethylsilyl Trifluoromethanesulfonate 512
4.4.21.8.2 Variation 2: Reductive Silylation of Azaaromatic Compounds 512
4.4.21.8.3 Variation 3: Synthesis of N,N'-Disilylated Enediamines 513
4.4.21.8.4 Variation 4: Preparation of Diazasilacycloalkenes 513
4.4.21.8.5 Variation 5: Reductive Silylation of Nitriles 514
4.4.21.9 Method 9: Hydrosilylation of Imines 514
4.4.21.9.1 Variation 1: Hydrosilylation of Carbodiimides 515
4.4.21.9.2 Variation 2: Hydrosilylation of Nitriles 515
4.4.21.10 Method 10: Preparation of Stable Silanimines 516
4.4.21.11 Method 11: Preparation of a Lithium Silaamidide 517
4.4.21.12 Method 12: Preparation and Reaction of Stable Cyclic Bis(amino)silylenes 517
4.4.22 Product Subclass 22: Silyl Phosphines 520
Synthesis of Product Subclass 22 521
4.4.22.1 Method 1: From Silyl Hydrides 521
4.4.22.2 Method 2: From Silyl Halides 522
4.4.22.3 Method 3: From Other Silyl Phosphines 524
4.4.22.4 Additional Methods 525
4.4.23 Product Subclass 23: Silylmethyl Anions 528
4.4.23.1 Method 1: Metalation of Alkylsilanes and Their Derivatives 532
4.4.23.1.1 Variation 1: With Alkyllithiums 533
4.4.23.1.2 Variation 2: With Schlosser's Base 534
4.4.23.1.3 Variation 3: With Lithium Diisopropylamide and Similar Amide Bases 534
4.4.23.1.4 Variation 4: With Other Bases 535
4.4.23.2 Method 2: Metal--Halogen Exchange of a-Haloalkylsilanes 535
4.4.23.2.1 Variation 1: With Magnesium 536
4.4.23.2.2 Variation 2: With Lithium 537
4.4.23.3 Method 3: Transmetalation Reactions of a-Silylalkylmetals 538
4.4.23.3.1 Variation 1: Of a-Silylalkyllithium Compounds 538
4.4.23.3.2 Variation 2: Of a-Silylalkylmagnesium 539
4.4.23.3.3 Variation 3: Of a-Silylalkylstannane 539
4.4.23.4 Method 4: Reductive Lithiation of a-Sulfanyl- and a-Selanylalkylsilanes 540
4.4.23.5 Method 5: Addition of Organometallic Reagents to Vinylsilanes and Their Analogues 541
4.4.23.5.1 Variation 1: Of Organolithium Reagents to Vinylsilanes 541
4.4.23.5.2 Variation 2: Of Organomagnesium Reagents to Vinylsilanes 542
4.4.23.6 Additional Methods 542
4.4.24 Product Subclass 24: Silyl Cyanides 546
4.4.24.1 Tetracoordinate Silyl Cyanides 546
4.4.24.1.1 Method 1: From Silyl Chlorides 547
4.4.24.1.1.1 Variation 1: Using Silver(I) or Mercury(II) Cyanide 548
4.4.24.1.1.2 Variation 2: Using Lithium Cyanide 548
4.4.24.1.1.3 Variation 3: Using Sodium or Potassium Cyanide 549
4.4.24.1.1.4 Variation 4: Using Tetraethylammonium Cyanide 549
4.4.24.1.1.5 Variation 5: Using Hydrogen Cyanide and Triethylamine 550
4.4.24.1.1.6 Variation 6: By Transcyanation 550
4.4.24.1.1.7 Variation 7: Using Acetonitrile 550
4.4.24.1.2 Method 2: From Other Silyl Halides 551
4.4.24.1.3 Method 3: By Cleavage of a Si--O Bond 552
4.4.24.1.4 Method 4: By Cleavage of a Si--S Bond 553
4.4.24.1.5 Method 5: By Cleavage of a Si--N Bond 554
4.4.24.1.6 Method 6: By Cleavage of a Si--C Bond 554
4.4.24.1.7 Method 7: By Cleavage of a Si--Si Bond 554
4.4.24.1.8 Method 8: By Cleavage of a Si--H Bond 555
4.4.24.1.9 Method 9: By Cleavage of a Si--Hg Bond 556
4.4.24.2 Pentacoordinate Silyl Cyanides 556
4.4.25 Product Subclass 25: Acylsilanes 560
Synthesis of Product Subclass 25 561
4.4.25.1 Simple Acylsilanes 561
4.4.25.1.1 Method 1: Hydroboration--Oxidation of Alkynylsilanes 562
4.4.25.1.2 Method 2: Hydrolysis of Acetals 562
4.4.25.1.3 Method 3: From Silylmetal Intermediates 565
4.4.25.1.4 Method 4: Preparation from Enol Ethers 568
4.4.25.1.5 Method 5: Palladium-Catalyzed Coupling 571
4.4.25.1.6 Method 6: Oxidation of a-Hydroxysilanes 571
4.4.25.1.7 Method 7: Silylation of Acylmetal Species 572
4.4.25.1.8 Method 8: Other Oxidative Methods 574
4.4.25.1.9 Additional Methods 575
4.4.25.2 a-Haloacylsilanes 576
4.4.25.2.1 Method 1: Halogenation of Trialk-1-enyl Borates 576
4.4.25.2.2 Method 2: Halogenation of the Enol Ethers of Acylsilanes 577
4.4.25.2.3 Method 3: Bromination--Rearrangement of Epoxysilanes 577
4.4.25.2.4 Additional Methods 578
4.4.25.3 a-Oxoacylsilanes 578
4.4.25.3.1 Method 1: Oxidation of Diols 578
4.4.25.3.2 Method 2: From Allenyl Ethers 579
4.4.25.3.3 Method 3: From Silyldiazoesters 579
4.4.25.4 a,ß-Unsaturated Acylsilanes 579
4.4.25.4.1 Method 1: From Allenyl Ethers 580
4.4.25.4.2 Method 2: Other Enol Ether Methods 582
4.4.25.4.3 Method 3: Hydroboration--Oxidation of Enynylsilanes and (Arylalkynyl)silanes 584
4.4.25.4.4 Method 4: From Alk-2-ynoylsilanes 585
4.4.25.4.5 Method 5: Oxidation of a-Hydroxysilanes 585
4.4.25.4.6 Additional Methods 586
4.4.25.5 a-Cyclopropylacylsilanes 587
4.4.25.5.1 Method 1: From Silylmetal Species 588
4.4.25.5.2 Method 2: From a-Haloacylsilanes 588
4.4.25.5.3 Additional Methods 589
4.4.25.6 a-Epoxyacylsilanes 590
4.4.25.6.1 Method 1: Epoxidation of a,ß-Unsaturated Acylsilanes 590
Applications of Product Subclass 25 in Organic Synthesis 590
4.4.25.7 Simple Acylsilanes 590
4.4.25.7.1 Method 1: Nucleophilic Addition 590
4.4.25.7.2 Method 2: Acylsilanes as Acyl Anion Precursors 597
4.4.25.7.3 Method 3: Enolate and Enol Ether Reactions 598
4.4.25.7.4 Method 4: Photochemistry 599
4.4.25.7.5 Method 5: Biotransformations 601
4.4.25.7.6 Method 6: Miscellaneous 602
4.4.25.8 a-Haloacylsilanes 602
4.4.25.9 a-Oxoacylsilanes 604
4.4.25.10 a,ß-Unsaturated Acylsilanes 605
4.4.26 Product Subclass 26: 1-Diazo-1-silylalkanes 616
Synthesis of Product Subclass 26 618
4.4.26.1 Method 1: From Trialkyl(chloromethyl)silanes by Diazo Transfer Reactions 618
4.4.26.2 Method 2: From Acylsilanes 620
4.4.26.3 Method 3: Silylation of a-Diazoacetates, a-Diazophosphonates, and a-Diazo Ketones 620
4.4.26.4 Method 4: Alkylation of Diazo(trimethylsilyl)methane 621
4.4.26.5 Method 5: Acylation of Diazo(pentamethyldisilanyl)methane 621
4.4.26.6 Method 6: Silylation of Diazo(trimethylsilyl)methane 622
4.4.27 Product Subclass 27: a-Haloalkylsilanes 626
Synthesis of Product Subclass 27 627
4.4.27.1 Method 1: Direct Halogenation of Alkylsilanes 627
4.4.27.1.1 Variation 1: Chlorination of Alkylsilanes 628
4.4.27.1.2 Variation 2: Bromination of Alkylsilanes 628
4.4.27.2 Method 2: Substitution of a-Hydroxyalkylsilanes 629
4.4.27.2.1 Variation 1: Substitution with Chloride Using Thionyl Chloride 630
4.4.27.2.2 Variation 2: Chlorination of a-Hydroxyalkylsilanes with Triphenylphosphine and Carbon Tetrachloride 631
4.4.27.2.3 Variation 3: Iodination of a-Hydroxyalkylsilanes with Methyl(triphenoxy)phosphonium Iodide 631
4.4.27.3 Method 3: Haloalkylation of Halosilanes 632
4.4.27.4 Method 4: Reaction of Halosilanes with Diazomethane 633
4.4.27.5 Method 5: Nucleophilic Substitution of Halo(haloalkyl)silanes 634
4.4.27.6 Method 6: Alkylation of a-Haloalkylsilanes 635
Applications of Product Subclass 27 in Organic Synthesis 635
4.4.28 Product Subclass 28: a-Silyl Alcohols, Ethers, and Amines 642
Synthesis of Product Subclass 28 644
4.4.28.1 Method 1: From Silyl Hydrides and Fischer Alkoxycarbene Complexes 644
4.4.28.2 Method 2: From Silyl Hydrides and N-Vinylamides or N-Vinylureas 644
4.4.28.3 Method 3: From Silyl Halides and Ethers or Amines 645
4.4.28.3.1 Variation 1: Deprotonative a-Silylation of Aliphatic Ethers with Lithium-free Butylpotassium and Chlorosilanes 645
4.4.28.3.2 Variation 2: Deprotonative a-Silylation of Alkyl Arylmethyl Ethers with tert-Butyllithium/N,N,N',N'-Tetramethylethylenediamine and Chlorosilanes 646
4.4.28.3.3 Variation 3: Deprotonative a-Silylation of Cyclic Secondary N-tert-Butoxycarbonyl Amines with sec-Butyllithium/N,N,N',N'-Tetramethylethylenediamine or sec-Butyllithium/(-)-Sparteine and Chlorosilanes 647
4.4.28.3.4 Variation 4: Dehalogenative Silylation of Chloromethyl Ethers with Lithium and Chlorosilanes 648
4.4.28.3.5 Variation 5: Desulfurative Silylation of a-Phenylsulfanyl Ethers with Lithium 1-(Dimethylamino)naphthalenide and Chlorosilanes 648
4.4.28.4 Method 4: From Silyl Halides and Aldehydes or Ketones by Reductive Silylation with Magnesium 649
4.4.28.5 Method 5: From Silyl Halides and Esters by Reductive Silylation with Magnesium or Sodium 650
4.4.28.5.1 Variation 1: Reductive Silylation of tert-Butyl or Trimethylsilyl Benzoates with the Chlorotrimethylsilane/Magnesium/Hexamethyl-phosphoric Triamide System 651
4.4.28.5.2 Variation 2: Reductive Silylation of Trimethylsilyl Alkanoates with the Chlorotrimethylsilane/Sodium/Tetrahydrofuran System 651
4.4.28.6 Method 6: From Silyl Halides and Cyanides or O-Trimethylsilyl Cyanohydrins by Reductive Silylation with Lithium 652
4.4.28.7 Method 7: From O-Silyl Ethers 653
4.4.28.7.1 Variation 1: Retro-[1,2]-Brook Rearrangement of Allyl and Benzyl O-Silyl Ethers 653
4.4.28.7.2 Variation 2: Retro-[1,2]-Brook Rearrangement of a-Stannyl Silyl Ethers 654
4.4.28.8 Method 8: From Silyl Anions and Aldehydes or Ketones 655
4.4.28.8.1 Variation 1: With Trimethylsilyllithium 656
4.4.28.8.2 Variation 2: With Tris(trimethylsilyl)aluminum--Diethyl Ether Complex 657
4.4.28.8.3 Variation 3: With Disilanes by Fluoride-Induced Catalysis 657
4.4.28.8.4 Variation 4: With Dimethylphenylsilyllithium 658
4.4.28.9 Method 9: From Silyl Anions and Esters 659
4.4.28.10 Method 10: From (a-Haloalkyl)silanes and Nitrogen or Oxygen Nucleophiles 660
4.4.28.10.1 Variation 1: N-Alkylation of Primary or Secondary Amines 660
4.4.28.10.2 Variation 2: O- and N-Alkylation of Masked Hydroxy or Amino Groups 661
4.4.28.11 Method 11: From a-Metallosilanes 662
4.4.28.12 Method 12: From Acylsilanes 663
4.4.28.12.1 Variation 1: Via Asymmetric Reduction with B-Chlorodiisopinocampheylborane 663
4.4.28.12.2 Variation 2: Via Samarium(II) Iodide Promoted Reductions and Alkylations 664
4.4.28.12.3 Variation 3: Via Addition of Organolithium or Organomagnesium Reagents 665
4.4.28.12.4 Variation 4: Via Barbier-type Addition of Organoindium Reagents 666
4.4.28.13 Method 13: From Vinylsilanes 667
4.4.28.13.1 Variation 1: Via Hydroboration 667
4.4.28.13.2 Variation 2: Via Catalytic Dihydroxylation with Osmium Tetroxide 668
4.4.28.14 Method 14: Modification of Existing a-Silyl Alcohols or Ethers 669
4.4.28.14.1 Variation 1: Via syn-Dihydroxylation of a-Silyl-a-vinyl Alcohols (a-Hydroxyallylsilanes) with Osmium Tetroxide 669
4.4.28.14.2 Variation 2: Via O-Alkylation of a-Silyl Alcohols with Allyl and Benzyl Trichloroacetimidoates Catalyzed by Lewis Acids 670
4.4.28.14.3 Variation 3: Via Addition of a-Lithio-a-silyl Ethers to Aldehydes or Ketones 670
4.4.28.15 Method 15: Modification of Existing a-Silyl Amines: a-Alkylation or a-Arylation of a-Silylamines with Grignard Reagents 671
4.4.28.16 Additional Methods 672
Applications of Product Subclass 28 in Organic Synthesis 673
4.4.29 Product Subclass 29: a,ß-Epoxysilanes 680
Synthesis of Product Subclass 29 680
4.4.29.1 Method 1: By Reaction of Lithiated a-Halosilanes with Aldehydes or Ketones 680
4.4.29.2 Method 2: By Epoxidation of a Vinylsilane 682
4.4.29.2.1 Variation 1: Reaction with a Peroxy Acid 682
4.4.29.2.2 Variation 2: Sharpless Epoxidation of a Silylated Allylic Alcohol 683
4.4.29.3 Method 3: By Reaction of an a-Metalated Epoxide 683
Applications of Product Subclass 29 in Organic Synthesis 684
4.4.29.4 Method 4: Reduction by Complex Hydrides 684
4.4.29.5 Method 5: Reaction with Organometallic Reagents 685
4.4.29.6 Method 6: Reaction with Heteroatom Nucleophiles 686
4.4.29.7 Method 7: Ring Opening/Desilylation to Aldehydes or Ketones 687
4.4.29.8 Method 8: Protodesilylation to Epoxides 688
4.4.29.9 Method 9: Formation of a-Alkoxy Ketones via Allene Epoxides 688
4.4.29.10 Method 10: Rearrangement to a-Silylaldehydes or a-Silyl Ketones 689
4.4.29.11 Method 11: Rearrangement to Silyl Enol Ethers 690
4.4.29.12 Method 12: Rearrangement to C-Silylated Allylic Alcohols 690
4.4.29.13 Method 13: Rearrangement to Allylic Silanols 691
4.4.29.14 Method 14: a-Metalation 692
4.4.30 Product Subclass 30: Alkynyl[Ethynyl]silanes 694
Synthesis of Product Subclass 30 694
4.4.30.1 Method 1: Reaction of Alkynes with Hydrosilanes via Dehydrogenative Coupling 694
4.4.30.2 Method 2: Reactions of Alkynylmetals with Silyl Halides 694
4.4.30.2.1 Variation 1: Of Chlorosilanes with Ethynylmagnesium Reagents 695
4.4.30.2.2 Variation 2: Of Chlorosilanes with Ethynyllithium Reagents 695
4.4.30.2.3 Variation 3: Of Chlorosilanes with Ethynylzinc Reagents 696
4.4.30.3 Method 3: Reactions of Ethynyl(trimethyl)silane or Bis(trimethysilyl)ethyne 696
4.4.30.3.1 Variation 1: The Sonogashira--Hagihara Reaction of Ethynyl(trimethyl)silane 696
4.4.30.3.2 Variation 2: Reactions of Bis(trimethylsilyl)ethyne with Various Organic Electrophiles 697
4.4.30.4 Methods 4: Additional Methods 697
Applications of Product Subclass 30 in Organic Synthesis 698
4.4.30.5 Method 5: Reactions of Ethynylsilanes with Carbonyl Compounds 698
4.4.30.6 Method 6: Asymmetric Alkynylation of Chiral Acetals 699
4.4.30.7 Method 7: Alkynylation of Acid Chlorides in the Presence of a Copper(I) Salt 700
4.4.30.8 Method 8: Coupling Reactions of Ethynylsilanes in the Presence of Transition Metals 700
4.4.31 Product Subclass 31: Silylketenes 704
Synthesis of Product Subclass 31 705
4.4.31.1 Method 1: Elimination Reactions 705
4.4.31.2 Method 2: Thermolysis of (Alkoxyethynyl)silanes (1,5-Hydrogen Transfer) 706
4.4.31.3 Method 3: Rearrangement by 1,3-Silyl Shift 707
4.4.31.3.1 Variation 1: From Alkoxyalkynes 707
4.4.31.3.2 Variation 2: From 2-Phenyl-2,3-dihydrofuran or 3-Phenylisoxazole 708
4.4.31.4 Method 4: From Diazo Compounds via Wolff Rearrangement 709
4.4.31.4.1 Variation 1: Photolysis 709
4.4.31.4.2 Variation 2: Metal (Copper or Rhodium) Catalysis 709
4.4.31.5 Method 5: Thermolysis or Photolysis of Cyclobutenediones or Cyclobutenones 710
Applications of Product Subclass 31 in Organic Synthesis 710
4.4.31.6 Method 6: Formation of ß-Lactones via Lewis Acid Promoted [2 + 2]-Cycloaddition Reaction 711
4.4.31.7 Method 7: Formation of Aza-Allenic Derivatives and Their Further Electrocyclization 711
4.4.32 Product Subclass 32: Allenylsilanes 716
Synthesis of Product Subclass 32 717
4.4.32.1 Method 1: From Lithiated Allenes and Trialkylhalosilanes 717
4.4.32.2 Method 2: From Allenyl Ethers 718
4.4.32.3 Method 3: From C-Silylated Propargylic Alcohols 718
4.4.32.3.1 Variation 1: Via Organocuprates 719
4.4.32.3.2 Variation 2: Via Grignard Reagents 719
4.4.32.3.3 Variation 3: Via Arylsulfonohydrazides 720
4.4.32.4 Method 4: From C-Silylated Propargylic Esters and Organoheterocuprates 720
4.4.32.4.1 Variation 1: From Silyl-Substituted Propargylic Sulfinates 720
4.4.32.4.2 Variation 2: From Silyl-Substituted Propargylic Sulfonates 721
4.4.32.5 Method 5: Silylcupration of Propargylic Esters 722
4.4.32.5.1 Variation 1: Silylcupration of Propargylic Acetates 722
4.4.32.5.2 Variation 2: Silylcupration of Propargylic Carbamates 723
4.4.32.6 Method 6: From Propargylsilanes 724
4.4.32.7 Method 7: From Silyl-Substituted Ynones 725
4.4.32.8 Method 8: From Silyl-Substituted Propargylboranes 725
4.4.32.9 Method 9: From Chloroenynes 726
4.4.32.10 Method 10: From Bromoallenes 726
4.4.32.11 Method 11: Via Amide Acetal Claisen Rearrangement of Propargylic Alcohols 727
4.4.32.12 Method 12: Chain Elongation of Allenylsilanes 727
4.4.32.13 Additional Methods 728
4.4.33 Product Subclass 33: Arylsilanes 732
Synthesis of Product Subclass 33 732
4.4.33.1 Method 1: Via the Würtz--Fittig Reaction 732
4.4.33.2 Method 2: Silylation of Aryl-Substituted Metals 733
4.4.33.2.1 Variation 1: Via Grignard Reagents 734
4.4.33.2.2 Variation 2: Via Organolithium Reagents 735
4.4.33.2.3 Variation 3: Via Reductive Silylation Followed by Oxidation 736
4.4.33.2.4 Variation 4: Via Halogen--Metal Exchange 736
4.4.33.3 Method 3: Electrophilic Aromatic Substitutions 737
4.4.33.4 Method 4: From Transition-Metal-Catalyzed Reactions 738
4.4.33.4.1 Variation 1: From Palladium Reagents 738
4.4.33.4.2 Variation 2: From Nickel and Rhodium Reagents 740
4.4.33.5 Method 5: From Cycloaddition Reactions 741
4.4.33.5.1 Variation 1: Via [2 + 3]-Dipolar Cycloadditions 741
4.4.33.5.2 Variation 2: Via [4 + 2] Cycloadditions 742
4.4.33.5.3 Variation 3: Via [2 + 2 + 2] Cycloadditions 743
4.4.33.6 Method 6: Via Silyl Migrations 744
4.4.33.6.1 Variation 1: Via [1,3] Oxygen-to-Carbon Silyl Migrations 744
4.4.33.6.2 Variation 2: Via [1,4] Oxygen-to-Carbon Silyl Migrations 745
4.4.33.7 Method 7: Via Photochemical Reactions 746
4.4.33.8 Method 8: Via Electrochemical Reactions 747
4.4.33.9 Methods 9: Additional Methods 748
Applications of Product Subclass 33 in Organic Synthesis 748
4.4.33.10 Method 10: Ipso-Substitution Reactions 748
4.4.33.11 Method 11: Oxidation of the C--Si Bond 749
4.4.33.12 Method 12: Cross-Coupling Reactions 750
4.4.33.13 Method 13: Protection of Hydroxy Groups 752
4.4.33.14 Method 14: Use as a Blocking Group 753
4.4.33.15 Method 15: Use as Traceless Linkers in Solid-Phase Synthesis 754
4.4.33.16 Method 16: Use as Fluorous Labels for Fluorous Synthesis 755
4.4.34 Product Subclass 34: Vinylsilanes 760
Synthesis of Product Subclass 34 760
4.4.34.1 Method 1: Vinylsilanes from Vinylmetal Compounds and Halosilanes 760
4.4.34.1.1 Variation 1: From Vinylcopper and Trialkylhalosilanes 760
4.4.34.1.2 Variation 2: From Vinylmagnesium Halides and Trialkyl- and Triarylhalosilanes 761
4.4.34.1.3 Variation 3: From Vinylsodium and Trialkylhalosilanes 762
4.4.34.1.4 Variation 4: From Vinyllithium and Trialkylhalosilanes 762
4.4.34.1.5 Variation 5: Using Metalated Vinylsilanes 764
4.4.34.2 Method 2: Coupling Reaction of Vinyl Halides with Silylmetal Species 766
4.4.34.3 Method 3: Addition--Elimination of Disilane to Vinyl Halides 767
4.4.34.4 Method 4: Coupling Reaction of (a- or ß-Halovinyl)silanes with Silylmetal Species 768
4.4.34.5 Method 5: Stille Coupling of Vinyl Halides with Trimethyl[(E)-2-(trimethylstannyl)vinyl]silane 770
4.4.34.6 Method 6: Reaction of Carbonyl Compounds with (Trimethylsilyl)methylmetal Species 771
4.4.34.6.1 Variation 1: Reaction of Aldehydes with Bis(trimethylsilyl)methyllithium 771
4.4.34.6.2 Variation 2: Reaction of Aldehydes with Bromobis(trimethylsilyl)methyllithium: Preparation of (a-Bromovinyl)silanes 772
4.4.34.6.3 Variation 3: Reaction of Carbonyl Compounds with Dimetal Species Derived from (Dibromomethyl)(trimethyl)silane 774
4.4.34.7 Method 7: By Wittig Reaction 775
4.4.34.8 Method 8: From Allylsilane Lithium Salt 776
4.4.34.9 Method 9: Dehydrogenative Silylation of Alkenes 776
4.4.34.10 Method 10: Heck-type Reaction 777
4.4.34.11 Method 11: Hydrogenation of Alkynylsilanes 778
4.4.34.12 Method 12: Hydrometalation of Alkynylsilanes 779
4.4.34.12.1 Variation 1: Hydrostannylation of Alkynylsilanes 779
4.4.34.12.2 Variation 2: Hydroalumination of Alkynylsilanes 779
4.4.34.12.3 Variation 3: Hydromagnesiation of Alkynylsilanes 781
4.4.34.13 Method 13: Carbocupration of Alkynylsilanes 782
4.4.34.14 Method 14: From Low-Valent Titanium Alkoxide--Alkynylsilane Complexes 782
4.4.34.15 Method 15: Radical Addition of Iodoalkanes to Alkynylsilanes 783
4.4.34.16 Method 16: [2 + 4] or [2 + 2] Cycloadditions of Alkynylsilanes 784
4.4.34.17 Method 17: Cyclization of Alk-.-en-a-ylsilanes 784
4.4.34.18 Method 18: Silylmetalation of Terminal Alkynes 785
4.4.34.19 Method 19: Hydrosilylation 787
4.4.34.19.1 Variation 1: Hydrosilylation of Alkynes 787
4.4.34.19.2 Variation 2: Transition-Metal-Catalyzed Hydrosilylative Cyclization of Dialkynes 789
4.4.34.20 Method 20: Birch Reduction of Arylsilanes 790
Applications of Product Subclass 34 in Organic Synthesis 790
4.4.34.21 Method 21: Proto- and Deuterodesilylation 791
4.4.34.22 Method 22: Cleavage of the Vinyl C--Si Bond with Tetrabutylammonium Fluoride 791
4.4.34.23 Method 23: Electrophilic Substitution with Halogens 792
4.4.34.24 Method 24: Friedel--Crafts Acylation 793
4.4.34.25 Method 25: Formylation of Vinylsilanes 794
4.4.34.26 Method 26: Nazarov Cyclization 794
4.4.34.27 Method 27: Diels--Alder Reaction of (1E-Buta-1,3-dienyl)trimethylsilanes 795
4.4.34.28 Method 28: Annulation Reaction of 3-(Trimethylsilyl)but-3-en-2-one 796
4.4.34.29 Method 29: Preparation of Allenes 798
4.4.34.30 Method 30: Preparation of Carboxylic Acids from Terminal Alkynes 799
4.4.34.31 Method 31: Use as a Masked Carbonyl Group 799
4.4.34.32 Method 32: Vinyl Heck Reaction 800
4.4.34.33 Method 33: Palladium-Catalyzed Coupling 800
4.4.34.34 Method 34: Generation of Vinylidene Carbene 801
4.4.35 Product Subclass 35: a-Silyl Carbonyl Compounds 804
Synthesis of Product Subclass 35 808
4.4.35.1 Method 1: C-Silylation of Enolates and Derivatives 808
4.4.35.1.1 Variation 1: Of Chiral Hydrazones 809
4.4.35.2 Method 2: Oxidation of ß-Hydroxysilanes 810
4.4.35.3 Method 3: Metal--Carbenoid Insertion into the Si--H Bond 810
4.4.35.4 Method 4: Addition of Nucleophiles to a-Silyl Ketenes 811
4.4.35.5 Method 5: Addition of a-Silyl Organometallic Reagents to Carbonyl Precursors 813
4.4.35.6 Method 6: Rearrangements 813
4.4.35.6.1 Variation 1: Isomerization of a,ß-Epoxysilanes 814
4.4.35.6.2 Variation 2: [1,3]-Oxygen-to-Carbon Migration of a Silicon Group 815
4.4.35.7 Additional Methods 816
4.4.36 Product Subclass 36: ß-Silyl Alkyl Halides 820
Synthesis of Product Subclass 36 821
4.4.36.1 Method 1: Addition of Hydrogen Halides to Allylsilane and Vinylsilanes 821
4.4.36.2 Method 2: Addition of Halogens to Allylsilane and Vinylsilanes 822
4.4.36.3 Method 3: Addition of Sulfur and Selenium Halides to Vinylsilanes and Allylsilanes 823
4.4.36.4 Method 4: Addition of Radicals 824
4.4.36.5 Method 5: Formation of (2-Halocyclopropyl)silanes by Addition of Halocarbenes to Alkenylsilanes and Allenylsilanes 825
4.4.36.6 Method 6: From Allylic Substitution of 1,2-Dihaloallyl Groups Using Trimethylsilyllithium and Copper(I) Iodide Reagent 827
4.4.36.7 Method 7: From Halogenation of (2-Hydroxyalkyl)silanes 827
4.4.36.8 Method 8: From Halogenation of ß-Silyl Carbonyl Compounds, a-Silylenol Ethers, or a-Silylenolates 828
4.4.36.8.1 Variation 1: From ß-Silyl Carbonyl Compounds 829
4.4.36.8.2 Variation 2: From a-Silylenol Ethers or a-Silylenolates of Acylsilanes 829
4.4.36.9 Additional Methods 830
Applications of Product Subclass 36 in Organic Synthesis 831
4.4.37 Product Subclass 37: ß-Silyl Alcohols and the Peterson Reaction 836
Synthesis of Product Subclass 37 838
4.4.37.1 Method 1: Direct Deprotonation of a Silane and Addition to a Carbonyl Compound 838
4.4.37.2 Method 2: From Silylmethylmagnesium Halides and Carbonyl Compounds 839
4.4.37.2.1 Variation 1: Grignard and Organolithium Reagents 839
4.4.37.2.2 Variation 2: Use of Organocerium Reagents 840
4.4.37.2.3 Variation 3: Formation of Vinyllithium Reagents 841
4.4.37.3 Method 3: Generation of the a-Silyl Carbanion by Transmetalation 841
4.4.37.3.1 Variation 1: Displacement of a Phenylsulfanyl Group by Lithium Naphthalenide 842
4.4.37.3.2 Variation 2: Displacement of a Phenylsulfanyl Group by Lithium 1-(Dimethylamino)naphthalenide 842
4.4.37.3.3 Variation 3: Displacement of a Tin Group 843
4.4.37.4 Method 4: Preparation of Vinyl Ethers and Other Heteroatom-Substituted Alkenes 843
4.4.37.4.1 Variation 1: Preparation of Enol Ethers 844
4.4.37.4.2 Variation 2: Preparation of Vinyl Sulfides 844
4.4.37.4.3 Variation 3: Preparation of Vinyl Sulfones 845
4.4.37.4.4 Variation 4: Preparation of Vinylphosphonates 845
4.4.37.4.5 Variation 5: Preparation of Vinylstannanes 845
4.4.37.4.6 Variation 6: Preparation of Difunctional Alkenes 846
4.4.37.5 Method 5: Preparation of a,ß-Unsaturated Carbonyl Compounds 846
4.4.37.5.1 Variation 1: Formation of a,ß-Unsaturated Esters 847
4.4.37.5.2 Variation 2: Formation of a,ß-Unsaturated Esters with Lithium Dicyclohexylamide as Base 847
4.4.37.6 Method 6: Preparation of a,ß-Unsaturated Nitriles 847
4.4.37.7 Method 7: Preparation of Enals Through Imines 848
4.4.37.8 Method 8: Reduction of a-Silyl Carbonyl Compounds 848
4.4.37.9 Method 9: Additions of Organometallic Reagents to a-Silyl Carbonyl Compounds 849
4.4.37.9.1 Variation 1: Addition of an Organometallic Reagent to an a-Silyl Ketone 849
4.4.37.9.2 Variation 2: Addition of an Organometallic Reagent to an a-Silyl Ester 850
4.4.37.10 Method 10: Addition of a Silylmetal to an Epoxide 851
4.4.37.11 Method 11: Vinylsilanes and Alkyllithiums with Carbonyl Compounds 851
4.4.38 Product Subclass 38: Propargylsilanes 858
Synthesis of Product Subclass 38 859
4.4.38.1 Method 1: From Propargylmagnesium Halides and Trialkyl- and Triarylsilicon Halides 859
4.4.38.1.1 Variation 1: Generation of the Grignard Reagent In Situ (Barbier Procedure) 859
4.4.38.1.2 Variation 2: Silylation of a Preformed Grignard Reagent 860
4.4.38.2 Method 2: From Alk-1-ynes 860
4.4.38.2.1 Variation 1: Coupling with (Halomethyl)trimethylsilane 860
4.4.38.2.2 Variation 2: Coupling with Trimethylsilylmethyl Trifluoromethanesulfonate 861
4.4.38.3 Method 3: From Alk-2-ynes 862
4.4.38.4 Method 4: From 1,3-Dilithiated Alk-1-ynes 862
4.4.38.5 Method 5: From 1-(Trimethylsilyl)alk-1-ynes 863
4.4.38.6 Method 6: From 1,3-Bis(trimethylsilyl)alk-1-ynes 864
4.4.38.7 Method 7: From 1-Bromoalk-1-ynes 864
4.4.38.7.1 Variation 1: Via Asymmetric Grignard Cross Coupling 864
4.4.38.7.2 Variation 2: Via Borinate Ester Cross Coupling 865
4.4.38.8 Method 8: From Benzyl Propargyl Ethers 865
4.4.38.9 Method 9: From a-Silylated Aldehydes 866
4.4.38.10 Method 10: From ß-Silylated Esters 867
4.4.38.11 Method 11: Chain Elongation from the Propargylic Carbon of Trimethyl(propargyl)silanes 867
4.4.38.12 Method 12: Chain Elongation from the Acetylenic Carbon of Trimethyl(propargyl)silanes 868
4.4.38.13 Additional Methods 869
4.4.39 Product Subclass 39: Benzylsilanes 872
Synthesis of Product Subclass 39 872
4.4.39.1 Method 1: From Benzylic Hydrogens 872
4.4.39.2 Method 2: From Benzylic Halogens 874
4.4.39.2.1 Variation 1: Via Benzylmagnesium Reagents 874
4.4.39.2.2 Variation 2: Via Benzyllithium Reagents 875
4.4.39.3 Method 3: By Substitution of Aromatic Hydrogens 875
4.4.39.4 Method 4: By Substitution of Aromatic Halogens 876
4.4.39.5 Method 5: By Hydrosilylation of Styrene Derivatives 877
4.4.39.6 Method 6: By Addition of Silylmetal Reagents 878
4.4.39.7 Methods 7: Additional Methods 879
Applications of Product Subclass 39 in Organic Synthesis 879
4.4.39.8 Method 8: Benzylsilanes in Organic Synthesis 879
4.4.40 Product Subclass 40: Allylsilanes 884
Synthesis of Product Subclass 40 886
4.4.40.1 Method 1: From Allylmagnesium Halides and Trialkylhalosilanes 886
4.4.40.1.1 Variation 1: Silylation of a Preformed Grignard Reagent 887
4.4.40.1.2 Variation 2: Silylation of an In Situ Generated Grignard Reagent 888
4.4.40.2 Method 2: From Allylmagnesium Halides by Transition-Metal-Catalyzed Coupling with Hydrosilanes 888
4.4.40.3 Method 3: From Allyl Chlorides by Zinc-Mediated Silylation 889
4.4.40.4 Method 4: From Allyl Halides by Electroreductive Synthesis 889
4.4.40.5 Method 5: By Silylation of Metalated Alkenes 890
4.4.40.5.1 Variation 1: From Lithiated Alkenes 890
4.4.40.5.2 Variation 2: From Alkenylpotassium Compounds 891
4.4.40.6 Method 6: From Metalated Allyl Halides and Chlorotrimethylsilane 893
4.4.40.7 Method 7: From a-Heteroalkenes by Transition-Metal-Catalyzed Cross Coupling 893
4.4.40.7.1 Variation 1: From Vinyl Halides With [(Trimethylsilyl)methyl]magnesium Halides and Related Species 893
4.4.40.7.2 Variation 2: From Enol Phosphates with [(Trialkylsilyl)methyl]magnesium Halides 895
4.4.40.7.3 Variation 3: From Vinyl Trifluoromethanesulfonates with Tris[(trimethylsilyl)methyl]aluminum 895
4.4.40.8 Method 8: From a-Silyl Aldehydes and Alkylidinetriphenylphosphoranes by a Wittig Reaction 896
4.4.40.9 Method 9: From Carbonyl Compounds and Trialkyl[2-(trimethylsilyl)ethylidene]phosphoranes by a Wittig Reaction 897
4.4.40.9.1 Variation 1: Via a Preformed ß-Silylated Phosphonium Salt 897
4.4.40.9.2 Variation 2: Via an In Situ Generated ß-Silylated Phosphonium Salt 898
4.4.40.10 Method 10: From Carbonyl Compounds and Ethyl 2-(Diethoxyphosphoryl)-3-(trimethylsilyl)propanoate by Horner--Wadsworth--Emmons Reaction 898
4.4.40.11 Method 11: From Carbonyl Compounds and ß-Silyl Thioacetals by Titanium(II)-Promoted Reductive Alkenation 899
4.4.40.12 Method 12: From Carbonyl Compounds and Trimethyl[2-(phenylsulfonyl)ethyl]silane by the Julia Reaction 900
4.4.40.13 Method 13: Formation of Exocyclic Allylsilanes by the Ramberg--Bäcklund Reaction 901
4.4.40.14 Method 14: From 1,3-Dienes by Hydrosilylation 902
4.4.40.15 Method 15: From 1,3-Dienes by Carbosilylation 903
4.4.40.16 Method 16: From Allyl Halides by Copper(I)-Catalyzed Silylation with Trichlorosilane 904
4.4.40.17 Method 17: From Allenes by Palladium(0)-Catalyzed Carbosilylation 904
4.4.40.18 Method 18: From Lithium Allyl Alcoholates and Hexamethyldisilane 905
4.4.40.19 Method 19: From Allyl Esters via Allylpalladium(0) Complexes 906
4.4.40.19.1 Variation 1: Using Disilanes 906
4.4.40.19.2 Variation 2: Using Samarium(II) Iodide and Chlorotrimethylsilane 907
4.4.40.20 Method 20: From Allyl Alcohols by Palladium(0)-Catalyzed Intramolecular Silylsilylation 908
4.4.40.21 Method 21: Formation of Bis(allylsilanes) from 1,3-Dienes 909
4.4.40.22 Method 22: From Allyl Esters or Allyl Carbamates and a Silylcuprate Reagent 910
4.4.40.22.1 Variation 1: From Allyl Esters 910
4.4.40.22.2 Variation 2: From Allyl Carbamates 911
4.4.40.23 Method 23: From Allyl Halides and a Silylcopper Reagent 912
4.4.40.24 Method 24: Formation of 2-Substituted Allylsilanes by Silylcupration of Allene 913
4.4.40.25 Method 25: From Allyl Halides or Allyl Phosphates and a Silyllithium Reagent 914
4.4.40.25.1 Variation 1: From Allyl Halides 914
4.4.40.25.2 Variation 2: From Allyl Phosphates 915
4.4.40.26 Method 26: Formation of 1,3-Disubstituted Allylsilanes by Decarboxylative Elimination 916
4.4.40.27 Method 27: Formation of 1-Substituted Allylsilanes by Grieco Dehydration 918
4.4.40.28 Method 28: From Alkynes and a-Silyl Organocopper Reagents 919
4.4.40.28.1 Variation 1: Stoichiometric Carbocupration with a Copper(I) Salt 919
4.4.40.28.2 Variation 2: Copper-Catalyzed Carbometalation of Alk-2-yn-1-ols 920
4.4.40.29 Method 29: From Mixed Vinylcuprates and (Iodomethyl)trimethylsilane or Related Reagents 921
4.4.40.30 Method 30: From Carboxylic Acid Derivatives and an Organocerium Reagent by a Peterson-type Reaction 921
4.4.40.31 Method 31: From .-Silylated Allylic Alcohols by a Claisen Rearrangement 923
4.4.40.31.1 Variation 1: By a Johnson Ortho Ester Claisen Rearrangement 923
4.4.40.31.2 Variation 2: By an Ireland--Claisen Rearrangement 924
4.4.40.31.3 Variation 3: By the Eschenmoser Variant of the Claisen Rearrangement 925
4.4.40.32 Method 32: From 1-Trimethylsilyl-1,3-dienes by a Diels--Alder Reaction 926
4.4.40.33 Method 33: Formation of Cyclopentanoid Allylsilanes by an Intramolecular Ene Reaction 926
4.4.40.34 Method 34: From Alkenyl Fischer Carbene Complexes by a [2 + 1]-Insertion Reaction with Triorganosilanes 927
4.4.40.35 Method 35: From Vinyldiazo Carbonyl Compounds by a Rhodium-Catalyzed [2 + 1]-Insertion Reaction with Triorganosilanes 928
4.4.40.36 Method 36: Formation of Formyl-Substituted Alk-2-enylsilanes by Photolysis 929
4.4.40.37 Method 37: From Allyl Sulfides by Reductive Silylation 930
4.4.40.37.1 Variation 1: By Retro-[1,4]-Brook Rearrangement 930
4.4.40.37.2 Variation 2: By Silylation of Oxyanion--Carbanionic Species 930
4.4.40.38 Method 38: From Allyl Sulfides and Tris(trimethylsilyl)silane by a Radical Reaction 931
4.4.40.39 Method 39: From Allyl Sulfones 932
4.4.40.40 Method 40: Formation of 3-Substituted Allylsilanes by a Peterson-type Elimination 933
4.4.40.41 Method 41: Formation of 3-Substituted Allylsilanes by Silicon-Directed Bamford--Stevens Reaction 933
4.4.40.42 Method 42: From .-Silylated Allylic Esters or Allyl Carbonates by a Palladium(0)-Catalyzed Reduction 934
4.4.40.42.1 Variation 1: From Allylic Esters 934
4.4.40.42.2 Variation 2: From Allylic Carbonates 935
4.4.40.43 Method 43: From Alk-2-ynylsilanes by Hydroalumination 936
4.4.40.44 Method 44: From Prop-2-ynylsilanes by Hydroboration 937
4.4.40.45 Method 45: From Alk-2-ynylsilanes by Catalytic Hydrogenation 937
4.4.40.46 Method 46: Formation of Exocyclic Allylsilanes by Intramolecular Reductive Heck Cyclization of Alk-2-ynylsilanes 938
4.4.40.47 Method 47: Formation of 3-Substituted Allylsilanes by Cross Metathesis 939
4.4.40.47.1 Variation 1: By Molybdenum-Catalyzed Cross Metathesis 939
4.4.40.47.2 Variation 2: By Ruthenium-Catalyzed Cross Metathesis 940
4.4.40.47.3 Variation 3: By Titanium(II)-Induced Cross Metathesis 940
4.4.40.48 Method 48: Formation of 2-Substituted Allylsilanes by the Heck Reaction 941
4.4.40.49 Method 49: From [2-(Iodomethyl)allyl]trimethylsilane by Indium-Mediated Allylsilylation of Aldehydes or Ketones 943
4.4.40.50 Method 50: From [2-(Silylmethyl)allyl]lithium by a Condensation Reaction 943
4.4.40.51 Method 51: From (2-Stannylallyl)silanes by Palladium(0)-Catalyzed Cross Coupling with Acid Chlorides or Aryl Bromides 944
4.4.40.52 Method 52: From [2-(Stannylmethyl)allyl]silanes by Radical Allylsilylation with Alkyl Halides 945
4.4.40.53 Method 53: From [2-(Stannylmethyl)allyl]silanes by Thermal Allylsilylation with Acid Chlorides or Aldehydes 946
4.4.40.54 Methods 54: Additional Methods 946
Applications of Product Subclass 40 in Organic Synthesis 948
4.4.40.55 Method 55: Protodesilylation of Allylsilanes 948
4.4.40.56 Method 56: Allylation of Reactive Alkyl Halides 949
4.4.40.57 Method 57: Radical Allylation of Alkyl Halides 950
4.4.40.58 Method 58: Addition to Epoxides and Oxetanes 950
4.4.40.59 Method 59: Allylation of Aldehydes and Ketones 952
4.4.40.59.1 Variation 1: By Lewis Acid Catalyzed Allylation 952
4.4.40.59.2 Variation 2: By Lewis Base Promoted Allylation 954
4.4.40.60 Method 60: Allylation of Acetals and Ketals 955
4.4.40.61 Method 61: Acylation with Acid Chloride 956
4.4.40.62 Method 62: Reaction with Iminium Ions 957
4.4.40.63 Method 63: Epoxidation and Ring Opening 957
4.4.40.64 Method 64: Aziridination and Ring Opening 958
4.4.40.65 Method 65: Dihydroxylation of Allylsilanes 959
4.4.40.66 Method 66: Conjugate Addition to a,ß-Unsaturated Carbonyl Compounds 960
4.4.40.67 Method 67: Palladium(0)-Catalyzed [3 + 2] Cycloaddition 962
4.4.40.68 Method 68: [3 + 4] Allyl Cation Cycloaddition 963
4.4.40.69 Method 69: Hydroxycyclopentanes from [3 + 2] Annulation with a-Enones 964
4.4.40.70 Method 70: Tetrahydrofurans by [3 + 2] Annulation with Aldehydes and Ketones 965
4.4.40.71 Method 71: a-Methylenecyclopentanones from Silicon-Directed Nazarov Cyclization 965
4.4.41 Product Subclass 41: ß-Silyl Carbonyl Compounds 974
4.4.41.1 Method 1: Hydrosilylation of Alkynes and Alkenes 976
4.4.41.1.1 Variation 1: Hydrosilylation of Propargyl Alcohols, and Oxidation or Isomerization 977
4.4.41.1.2 Variation 2: Hydrosilylation and Dehydrogenation 977
4.4.41.1.3 Variation 3: Hydrosilylation--Carbonylation 978
4.4.41.2 Method 2: Silylmetalation of Alkynes and Alkenes 979
4.4.41.2.1 Variation 1: Silylmetalation of a,ß-Unsaturated Carbonyl Compounds 979
4.4.41.2.2 Variation 2: Silylmetalation and Acylation of Alkynes 981
4.4.41.3 Method 3: Electrophilic Silylation of Functionalized Three-Carbon Reagents 982
4.4.41.3.1 Variation 1: Electrophilic Silylation of Allyllithium Reagents 982
4.4.41.3.2 Variation 2: Electrophilic Silylation at C3 of Masked a,ß-Unsaturated Aldehydes and Ketones 983
4.4.41.3.3 Variation 3: Reductive Silylation of Anisole and Hydrolysis 985
4.4.41.4 Method 4: Carbonylation or Carboxylation of Vinylsilanes 986
4.4.41.5 Method 5: Trimethylsilylmethylation of Enolates and Enolate Equivalents 988
4.4.41.6 Method 6: Claisen Rearrangement of Esters of 3-Silylallyl Alcohols 989
4.4.41.7 Additional Methods 990
4.4.42 Product Subclass 42: .-Silyl Alkyl Halides, Alcohols, and Esters Thereof 994
4.4.42.1 Method 1: From Silyl Anions and Functionalized Three-Carbon Electrophiles 996
4.4.42.2 Method 2: From Silicon Electrophiles and Functionalized Three-Carbon Nucleophiles 997
4.4.42.2.1 Variation 1: Intermolecular Silylation of C,O-Dianions Derived from Functionalized Alcohols 997
4.4.42.2.2 Variation 2: Silicon Transfer in 3-Siloxy Carbanions: The Retro-[1,4]-Brook Rearrangement 998
4.4.42.3 Method 3: From a-Silylated Carbanions and Epoxides 1000
4.4.42.4 Method 4: Hydrosilylation of Allylic Compounds 1002
4.4.42.4.1 Variation 1: Hydrosilylation of Allylic Halides, Alcohols, and Esters 1002
4.4.42.4.2 Variation 2: Intramolecular Hydrosilylation of Allyloxysilanes 1003
4.4.42.5 Method 5: Coupling between Vinylsilanes and Aldehydes or Ketones 1005
4.4.42.5.1 Variation 1: Carbozirconation of Vinylsilanes 1005
4.4.42.5.2 Variation 2: Coupling Initiated by Electron Transfer 1006
4.4.42.6 Method 6: Additions to Allylsilanes 1007
4.4.42.6.1 Variation 1: Hydrometalation--Oxidation of Allylsilanes 1007
4.4.42.6.2 Variation 2: Carbometalation of Allylsilanes 1008
4.4.42.6.3 Variation 3: Free-Radical Addition to Allylsilanes 1009
4.4.42.7 Method 7: Addition of ß-Silylated Carbanions to Aldehydes and Ketones 1010
4.4.42.7.1 Variation 1: Addition of ß-Silyl Organometallic Reagents to Aldehydes and Ketones 1010
4.4.42.7.2 Variation 2: Condensation of ß-Silyl Enolates with Carbonyl Compounds 1011
Keyword Index 1020
Author Index 1050
Abbreviations 1102
Erscheint lt. Verlag | 14.5.2014 |
---|---|
Co-Autor | Hans Adolfsson, David J. Ager, Jesus M. Aizpurua, Toyohiko Aoyama, Kim M. Baines |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie ► Organische Chemie |
Technik | |
Schlagworte | antimony • arsenic • Bismuth • carbon-based struct • carbon-based structures • Chemie • Chemische Synthese • chemistry of organic compound • chemistry organic reaction • chemistry reference work • chemistry synthetic methods • compound functional group • compound organic synthesis • methods in organic synthesis • methods peptide synthesis • Organic Chemistry • organic chemistry functional groups • organic chemistry reactions • organic chemistry review • organic chemistry synthesis • organic method • organic reaction • organic reaction mechanism • Organic Syntheses • organic synthesis • organic synthesis reference work • Organisch-chemische Synthese • Organische Chemie • Organometallic Chemistry • organometallic compound • organometallic reactions • Organometallic Synthesis • organometallic transformation • organosilicon chemistry • practical organic chemistry • reference work • review organic synthesis • review synthetic methods • silicon-containing compounds • Synthese • Synthetic Methods • Synthetic Organic Chemistry • synthetic transformation |
ISBN-10 | 3-13-177931-4 / 3131779314 |
ISBN-13 | 978-3-13-177931-1 / 9783131779311 |
Haben Sie eine Frage zum Produkt? |
Größe: 12,4 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 34,9 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich