Symmetrical Components -  L. J. Myatt

Symmetrical Components (eBook)

The Commonwealth and International Library: Applied Electricity and Electronics Division

(Autor)

P. Hammond (Herausgeber)

eBook Download: PDF | EPUB
2014 | 1. Auflage
184 Seiten
Elsevier Science (Verlag)
978-1-4831-8120-2 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
24,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Provides a unified view of filtering tec
Symmetrical Components introduces the fundamental concepts involved in the method of symmetrical components. The book also demonstrate the method for analyzing simple power networks that are subjected to unbalanced fault conditions. The text first discusses the h operator, and then proceeds to detailing symmetrical components. The next two chapters cover the properties and measurement of symmetrical components. Chapter 5 tackles the short-circuit faults on an alternating current generator, while Chapter 6 discusses the equivalents circuits for unbalanced faults. The seventh chapter talks about the sequence networks and faults on three-phase systems, while the last chapter deals with unbalanced loads. The text will be of great use to students of electrical engineering. Professional electrical engineers and technicians will also benefit from the book.

Front Cover 1
Symmetrical Components 4
Copyright Page 5
Table of Contents 6
Preface 8
Acknowledgements 9
CHAPTER 1. The h Operator 10
1. Representation of sinusoidal quantity by a vector 11
2. The h operator 13
3. Functions of h 16
4. Simplification of hn 17
5· Simplification of (h + k)-1 and (h2 + k)-1 18
6. Useful functions of h 20
7. Symmetrical three-phase voltages 21
8. Positive-phase sequence 21
9 . Negative phase sequence 22
10. Zero-phase sequence 23
11. Star-delta impedance transformations 24
12. Percentage and per unit values 26
Exercises 32
CHAPTER 2. Symmetrical Components 33
14. Resolution into symmetrical components 33
15. Solution of symmetrical components 35
16. Sum and difference equations 38
17. Zero-sequence currents 43
18. Line-to-line voltages 46
19. Graphical determination of phase voltages from line voltages when zero-sequence component is absent 48
20. Alternative graphical method to determine zero-phase sequence voltage 49
21. Alternative graphical method to determine positive- and negative-phase sequence voltages from phase voltages 51
22. Graphical determination of positive- and negative-phase sequence voltages from line voltages 53
23. Unbalance factor 55
Exercises 56
CHAPTER 3. The Properties of Symmetrical Components 57
24. Phase sequence currents and voltages in a symmetrical network 57
25. Generated e.m.f. of a three-phase generator 65
26. Neutral current 66
27. Generator with neutral earthed through an impedance 67
28. Kirchhoff's first law 69
29. Kirchhofes second law 71
30. Star–delta transformations 72
31. Star–delta transformers 75
32. Effects of unbalanced loading on synchronous machines 82
33. Power due to unbalanced three-phase loads 83
Exercises 86
CHAPTER 4. The Measurement of Symmetrical Components 88
34. Zero-sequence voltage 88
35. Zero-sequence current 89
36. Positive- and negative-sequence voltage 91
37. Simultaneous measurement of positive- and negative-sequence voltage 94
38. Positive- and negative-sequence current without residue 95
39. Simultaneous measurement of positive- and negative-sequence currents without residue 97
40. Elimination of zero-sequence component 99
41. Negative-sequence bridge 100
42. Positive- and negative-sequence filter 102
43· Zero-sequence power 106
44. Positive-sequence power 107
45. Negative-sequence power 110
Exercises 110
CHAPTER 5. Short-circuit Faults on an Alternating current Generator 113
46. Line-to-Iine fault 114
47. Line-to-line fault through an impedance 116
48. Single line-to-earth fault 119
49. Single line-to-earth fault through an impedance 121
50. Double line-to-earth fault 126
51. Double line-to-earth fault through an impedance 129
52. Three-phase fault 134
53. Three-phase fault through an impedance 136
Exercises 138
CHAPTER 6. Equivalent Circuits for Unbalanced Faults 139
54. Line-to-line fault 139
55. Single line-to-earth fault 141
56. Double line-to-earth fault 144
57. Three-phase fault 145
Exercise 148
CHAPTER 7. Sequence Networks and Faults on Three-phase Systems 149
58. Unbalanced fault on a three-phase system 149
59. Positive-sequence network 152
60. Negative-sequence network 152
61. Zero-sequence network 152
62. Zero-sequence impedances 153
63. Method of fault calculation for a network 160
64. Use of analogues 166
Exercises 168
CHAPTER 8. Unbalanced Loads 169
65. Unbalanced star-connected load 169
66. Currents in unbalanced load 172
67. Voltages across the unbalanced load 174
68. Use of unbalanced load to determine phase sequence 176
Exercise 178
APPENDIX: Use of Matrix Notation 179
Bibliography 182
Answers to Exercises 183
Index 184

CHAPTER 1

The h Operator


Publisher Summary


This chapter provides an overview of h operator. When performing calculations on single-phase circuits an operator was used, which, when multiplied by a vector, had the effect of rotating the vector through an angle of 90°, and for this purpose the j operator was used. In dealing with three-phase quantities, and in particular when applying the method of symmetrical components, there are definite advantages to be gained by having an operator that is capable of rotating a vector through an angle of 120°, because of the angular displacement of balanced three-phase vectors. The chapter further discusses symmetrical three-phase voltages, positive-phase sequence, negative phase sequence, zero-phase sequence, and Star-delta impedance transformations.

In a three-phase system, the three-phase voltages or currents may be said to be balanced if they are sinusoidal and, when represented by vectors, are of equal magnitude and displaced from each other by equal phase angles of 120°. A three-phase circuit is also balanced, or symmetrical, when each of the three phases contain equal impedances. Furthermore, if a balanced system of three-phase voltages is applied across the terminals of a balanced three-phase network, then the currents flowing in each of the three phases will also be balanced.

The solution of a problem involving a balanced three-phase system may be found by considering only one phase in which the voltage, or current, is taken as the reference vector and solving for that phase alone as in the case of a single-phase problem. The magnitude of the currents and voltages in the other two phases will then be the same as in the reference phase but there will be a corresponding phase displacement of ±120° as appropriate.

If now the applied voltage is unbalanced, or the impedances in each phase are no longer identical, the three-phase currents will also become unbalanced and the problem cannot be solved by considering a single phase as in the above method. It would be possible in a simple problem of unbalance to find a solution by applying Kirchhoff’s laws, but in the more involved type of problem, such as that involving a power network, a less laborious method is necessary.

Considerable thought was given to the problem of unbalance, at the beginning of the century, with particular reference to the unbalanced loading of three-phase machines, and L. G. Stokvis showed that, under such conditions, the armature m.m.f. of a three-phase generator may be treated as two separate components, equivalent to the effect of two balanced loads. It remained for C. L. Fortesque to develop the method, now known as the method of symmetrical components, after working on problems associated with the use of phase balancers in the single-phase electrification of railways. Following on from this, he studied the problem of unbalance in general when, in 1918, he published his very important paper “The method of symmetrical coordinates applied to the solution of polyphase networks”. In this paper he showed how it was possible for a set of unbalanced polyphase currents to be resolved into a number of component systems of balanced currents equal to the number of phases. A further development of the theory provides considerable simplification in solving problems involving unbalanced faults on power networks.

1 Representation of sinusoidal quantity by a vector


The instantaneous value v of sinusoidal voltage of frequency f Hz is given by

υ=Vsinωt, (1)

(1)

where V = maximum value and ω = 2 π f.

This may be represented by a rotating vector of magnitude V having a constant angular velocity ω rad/s as shown in Fig. 1. The vector OV rotates anticlockwise about O starting from Ox when t = 0. The angle turned through, at any time t, is then given by ωt and the instantaneous value v at any time is given by V sin ωt which is the projection of OV on the Y-axis, Oy.


FIG. 1 Vector representation of a sinusoidal quantity.

If the vector V is now shown on an Argand diagram as in Fig. 2 where θ = ωt, it may be represented by (a + jb).


FIG. 2 Representation of a vector on an Argand diagram.

a=Vcosθ,

where

b=Vsinθ,a+jb=V(cosθ+jsinθ). (2)

(2)

Another way of expressing the vector is as V/θ, where V is known as the modulus and would correspond to the peak value of the alternating voltage wave of Fig. 1, and θ is known as the argument and represents the angular displacement of the vector V from the real axis X’OX.

Now

cosθ+jsinθ=ejθ, (3)

(3)

and

V(cosθ+jsinθ)=Vejθ. (4)

(4)

Thus the expression Vejθ may be used to represent a vector of modulus V and argument θ.

2 The h operator


When performing calculations on single-phase circuits use was made of an operator, which, when multiplied by a vector, had the effect of rotating the vector through an angle of 90°, and for this purpose the j operator was used. In dealing with three-phase quantities, and in particular when applying the method of symmetrical components, there are definite advantages to be gained by having an operator which is capable of rotating a vector through an angle of 120°, due to the angular displacement of balanced three-phase vectors.

First let us consider the multiplication of two complex quantities which may be represented by and , then we may write

r1/θ1_r2/θ2_=r1(cosθ1+jsinθ1)r2(cosθ2+jsinθ2)=r1r2(cosθ1cosθ2+jsinθ1cosθ2+jcosθ1sinθ2−sinθ1sinθ2)=r1r2(cosθ1cosθ2−sinθ1sinθ2)+j(sinθ1cosθ2+cosθ1sinθ2)=r1r2[cos(θ1+θ2)+jsin(θ1+θ2)]=r1r2/θ1+θ2_. (5)

(5)

Thus it may be observed that the modulus of the product of two complex quantities is equal to the product of their moduli, and that the argument of their product is equal to the sum of their arguments.

Suppose now that is replaced by a voltage vector V/θ, and is used to denote an operator such that it will rotate the voltage vector through an angle of 120° to give a new vector V/θ + 120°, then

r1/θ″1_,V/θ_=V/θ+120°_.

Comparing the moduli and arguments with the results of eqn. (5) gives

r1V=V.

Therefore

r1=1;

also

θ+θ1=θ+120°

Therefore

θ1=120°.

The operator r1 /θ1 is then given by

r1/θ1_=1/120°_=ej2π/3. (6)

(6)

Various symbols, including a, λ, and h, have been assigned to this operator by different writers on the subject, but the latter is now used in accordance with standard practice, as recommended by the British Standards Institution. Hence,

h=ej2π/3,=cos2π/3+jsin2π/3,=−12+j12√3. (7)

(7)

Considering again the results of eqns. (5) and (6) it may be stated that, in general, a vector multiplied by ejπ/n will cause an angular rotation of 2π/n in the vector, and so it is a simple matter to produce an operator capable of rotating a vector through any desired angle. For example, the j operator which rotates a vector through an angle of 90° would be represented by ejπ/2, where

ejπ/2=(cosπ/2+jsinπ/π)=j. (8)

(8)

A further significance may be attached to the h operator if we consider a vector represented by V as shown in Fig. 3 and which is shown drawn on the reference axis OX. If this vector is multiplied by h, giving hV, it will be rotated through 120°. A second multiplication by h, giving h2V, will give a further rotation of 120° and a third multiplication by h, giving h3V, will cause a further rotation of 120° bringing us back to the original position of vector V on the reference axis. It is now apparent that


FIG. 3 The h operator.

h3V=V,h3=1. (9)

(9)

In other words, h...

Erscheint lt. Verlag 28.6.2014
Sprache englisch
Themenwelt Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 1-4831-8120-0 / 1483181200
ISBN-13 978-1-4831-8120-2 / 9781483181202
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 5,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 4,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen der Berechnung und baulichen Ausbildung von Stahlbauten

von Jörg Laumann; Markus Feldmann; Jörg Frickel …

eBook Download (2022)
Springer Vieweg (Verlag)
119,99