BioH2 & BioCH4 Through Anaerobic Digestion

From Research to Full-scale Applications
Buch | Hardcover
218 Seiten
2015
Springer London Ltd (Verlag)
978-1-4471-6430-2 (ISBN)

Lese- und Medienproben

BioH2 & BioCH4 Through Anaerobic Digestion - Bernardo RUGGERI, Tonia Tommasi, Sara Sanfilippo
106,99 inkl. MwSt
This book presents a Two-Stage Anaerobic Digestion (TSAD) technique for producing hydrogen and methane, following a step-by-step approach in order to guide readers through the experimental verification of the related hypothesis. In the first stage of AD, the reaction conditions are optimized to obtain the maximum amount of hydrogen, while in the second the liquid residue from the first phase is used as a substrate to produce fuel-methane. AD has traditionally been used to reduce the organic content of waste; this results in a biogas that is primarily constituted of CH4 and CO2. Over the last few decades, the conversion of organic matter into hydrogen by means of AD and selecting Hydrogen Producing Bacteria (HPB) has matured into a viable and sustainable technology among the pallet of H2 generation technologies. The combined bio-production of hydrogen and methane from Organic Waste Materials (OWM) is considered to be an ideal way of utilizing waste, and can increase energy efficiency (the substrate Heat Value converted into H2 and CH4 fuel) to roughly 80%, since the energy efficiency of H2-production alone (15%) is not energetically competitive. The two gas streams can be used either separately or in combination (Hytane®), be supplied as civilian gas or used for transportation purposes. All the aspects of this sustainable technology are taken into account, from the basic biochemical implications to engineering aspects, establishing the design criteria and the scale-up procedures for full-scale application. The sustainability of the TSAD method is assessed by applying EROI (Energy Return On Investment) and EPT (Energy Payback Time) criteria, and both the general approach and application to the field of Anaerobic Digestion are illustrated.  

Dark-h2 production ecological mechanisms by the mixed microbial community.- Pretreatment to increase hydrogen forming bacteria (hfb) physiological differences between h2-producing bacteria and h2-uptaking bacteria.- Kinetics and dynamics of h2 production.- Effect of temperature on fermentative h2 production.- Energy production of h2 in dark anaerobic fermentation.- Hydrogen production from bio-waste biomass as food for microorganisms.- Design criteria and scale-up procedure for h2 production.- Valorization of end-liquid products of h2 fermentation.- The technology of bioh2 plus bioch4.- Sustainability of the bioh2 plus bioch4 process.                                                                                                                                    

Reihe/Serie Green Energy and Technology
Zusatzinfo 70 Illustrations, color; 4 Illustrations, black and white; XX, 218 p. 74 illus., 70 illus. in color.
Verlagsort England
Sprache englisch
Maße 155 x 235 mm
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Umwelttechnik / Biotechnologie
Schlagworte Anaerobic digestion • Bio H2 & Bio CH4 • Biotreatments • Energy sustainability • Organic Waste
ISBN-10 1-4471-6430-X / 144716430X
ISBN-13 978-1-4471-6430-2 / 9781447164302
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Wegweiser für Elektrofachkräfte

von Gerhard Kiefer; Herbert Schmolke; Karsten Callondann

Buch | Hardcover (2024)
VDE VERLAG
48,00