Science of Synthesis Knowledge Updates 2013 Vol. 4 (eBook)

eBook Download: PDF | EPUB
2014 | 1. Auflage
500 Seiten
Thieme (Verlag)
978-3-13-198381-7 (ISBN)

Lese- und Medienproben

Science of Synthesis Knowledge Updates 2013 Vol. 4 -
Systemvoraussetzungen
Systemvoraussetzungen
2.999,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The Science of Synthesis Editorial Board,together with the volume editors and authors, is constantly reviewing the whole field of synthetic organic chemistry as presented in Science of Synthesis and evaluating significant developments in synthetic methodology. Four annual volumes updating content across all categories ensure that you always have access to state-of-the-art synthetic methodology.

Science of Synthesis: Knowledge Updates 2013/4 1
Title page 5
Imprint 7
Preface 8
Abstracts 10
Overview 16
Table of Contents 18
Volume 2: Compounds of Groups 7–3 (Mn···, Cr···, V···, Ti···, Sc···, La···, Ac···) 32
2.12 Product Class 12: Organometallic Complexes of Scandium, Yttrium, and the Lanthanides 32
2.12.16 Organometallic Complexes of Scandium, Yttrium, and the Lanthanides 32
2.12.16.1 Rare Earth Metal Catalyzed Hydroamination Reactions 32
2.12.16.1.1 Rare-Earth(II) Complexes 32
2.12.16.1.1.1 Synthesis of Rare-Earth(II) Complexes 33
2.12.16.1.1.1.1 Method 1: Salt Metathesis 33
2.12.16.1.1.2 Applications of Rare-Earth(II) Complexes in Organic Synthesis 34
2.12.16.1.1.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkynes 34
2.12.16.1.1.2.2 Method 2: Catalytic Intramolecular Hydroamination Reaction of Alkenes 35
2.12.16.1.2 Cyclooctatetraene–Rare-Earth(III) Complexes 36
2.12.16.1.2.1 Synthesis of Cyclooctatetraene–Rare-Earth(III) Complexes 36
2.12.16.1.2.1.1 Method 1: Salt Metathesis 36
2.12.16.1.2.2 Applications of Cyclooctatetraene–Rare-Earth(III) Complexes in Organic Synthesis 37
2.12.16.1.2.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkynes 37
2.12.16.1.2.2.2 Method 2: Catalytic Intramolecular Hydroamination Reaction of Alkenes 38
2.12.16.1.3 Bis(boratabenzene)yttrium(III) Complexes 39
2.12.16.1.3.1 Synthesis of Bis(boratabenzene)yttrium(III) Complexes 39
2.12.16.1.3.1.1 Method 1: Salt Metathesis 39
2.12.16.1.3.2 Applications of Bis(boratabenzene)yttrium(III) Complexes in Organic Synthesis 41
2.12.16.1.3.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkenes 41
2.12.16.1.4 Bis(pentamethylcyclopentadienyl)– and Modified Bis(cyclopentadienyl)–Rare-Earth(III) Complexes 41
2.12.16.1.4.1 Synthesis of Bis(pentamethylcyclopentadienyl)– and Modified Bis(cyclopentadienyl)–Rare-Earth(III) Complexes 42
2.12.16.1.4.1.1 Method 1: Salt Metathesis 42
2.12.16.1.4.1.1.1 Variation 1: Two-Step Procedures 42
2.12.16.1.4.1.1.2 Variation 2: Single-Pot Procedures 47
2.12.16.1.4.1.2 Method 2: Alkane and Arene Elimination 49
2.12.16.1.4.1.2.1 Variation 1: Hydride and Aryl Complexes 49
2.12.16.1.4.1.2.2 Variation 2: Polymer-Bound Complexes 50
2.12.16.1.4.2 Applications of Bis(pentamethylcyclopentadienyl)– and Modified Bis(cyclopentadienyl)–Rare-Earth(III) Complexes in Organic Synthesis 51
2.12.16.1.4.2.1 Method 1: Catalytic Hydroamination Reactions of Monoalkynes 51
2.12.16.1.4.2.1.1 Variation 1: Intramolecular Reaction 51
2.12.16.1.4.2.1.2 Variation 2: Intermolecular Reaction 53
2.12.16.1.4.2.2 Method 2: Catalytic Intramolecular Hydroamination Reaction of Monoalkenes 55
2.12.16.1.4.2.2.1 Variation 1: Catalysis by Non-Polymer-Bound Complexes 55
2.12.16.1.4.2.2.2 Variation 2: Catalysis by Polymer-Bound Complexes 61
2.12.16.1.4.2.3 Method 3: Catalytic Intermolecular Hydroamination Reaction of Monoalkenes 62
2.12.16.1.4.2.3.1 Variation 1: Reaction of Monosubstituted Alkenes 62
2.12.16.1.4.2.3.2 Variation 2: Reaction of Methylenecyclopropanes 63
2.12.16.1.4.2.4 Method 4: Catalytic Intramolecular Hydroamination Reaction of 1,2-Dienes 64
2.12.16.1.4.2.5 Method 5: Catalytic Hydroamination Reaction of 1,3-Dienes 66
2.12.16.1.4.2.6 Method 6: Catalytic Intermolecular Hydroamination Reaction of Di- and Trivinylarenes 68
2.12.16.1.4.2.7 Method 7: Catalytic Hydroamination Reaction of Dialkynes, Alkenylalkynes, and Dialkenes Other than Divinylarenes and 1,2- and 1,3-Dienes 69
2.12.16.1.5 Modified Mono(cyclopentadienyl)–Rare-Earth(III) Complexes 74
2.12.16.1.5.1 Synthesis of Modified Mono(cyclopentadienyl)–Rare-Earth(III) Complexes 74
2.12.16.1.5.1.1 Method 1: Salt Metathesis 74
2.12.16.1.5.1.1.1 Variation 1: Two-Step Procedures 74
2.12.16.1.5.1.1.2 Variation 2: Single-Pot Procedures 75
2.12.16.1.5.1.2 Method 2: Silylamine or Alkane Elimination 76
2.12.16.1.5.2 Applications of Modified Mono(cyclopentadienyl)–Rare-Earth(III) Complexes in Organic Synthesis 79
2.12.16.1.5.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkynes and Monoalkenes 79
2.12.16.1.5.2.2 Method 2: Catalytic Intermolecular Hydroamination Reaction of Alkynes and Monoalkenes 83
2.12.16.1.5.2.3 Method 3: Catalytic Intramolecular Hydroamination Reaction of 1,2- and 1,3-Dienes 84
2.12.16.1.6 Heteroleptic Rare-Earth(III) Complexes Bearing X-Type Ligands 86
2.12.16.1.6.1 Synthesis of Heteroleptic Rare-Earth(III) Complexes Bearing X-Type Ligands 87
2.12.16.1.6.1.1 Method 1: Salt Metathesis/Alkane Elimination 87
2.12.16.1.6.2 Applications of Heteroleptic Rare-Earth(III) Complexes Bearing X-Type Ligands in Organic Synthesis 89
2.12.16.1.6.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkynes and Monoalkenes 89
2.12.16.1.7 Rare-Earth(III) Complexes Bearing LnX-Type Ligands (n = 1–3) 90
2.12.16.1.7.1 Synthesis of Rare-Earth(III) Complexes Bearing LnX-Type Ligands (n = 1–3) 91
2.12.16.1.7.1.1 Method 1: Salt Metathesis 91
2.12.16.1.7.1.2 Method 2: Silylamine or Alkane Elimination 93
2.12.16.1.7.1.3 Method 3: Alkylation 97
2.12.16.1.7.1.4 Method 4: Ligand Abstraction 98
2.12.16.1.7.2 Applications of Rare-Earth(III) Complexes Bearing LnX-Type Ligands (n = 1–3) in Organic Synthesis 99
2.12.16.1.7.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkynes, Monoalkenes, and 1,3-Dienes 99
2.12.16.1.7.2.1.1 Variation 1: Catalysis by Isolated Complexes 99
2.12.16.1.7.2.1.2 Variation 2: Catalysis by Complexes Generated In Situ 103
2.12.16.1.8 Rare-Earth(III) Complexes Bearing X2-Type Ligands 105
2.12.16.1.8.1 Synthesis of Rare-Earth(III) Complexes Bearing X2-Type Ligands 106
2.12.16.1.8.1.1 Method 1: Salt Metathesis 106
2.12.16.1.8.1.2 Method 2: Silylamine, Alkane, or Arene Elimination 108
2.12.16.1.8.1.2.1 Variation 1: From Isolated Homoleptic Complexes 108
2.12.16.1.8.1.2.2 Variation 2: From Homoleptic Complexes Generated In Situ 113
2.12.16.1.8.2 Applications of Rare-Earth(III) Complexes Bearing X2-Type Ligands in Organic Synthesis 116
2.12.16.1.8.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkynes, Alkenes, and Dienes 116
2.12.16.1.8.2.1.1 Variation 1: Catalysis by Isolated Complexes 116
2.12.16.1.8.2.1.2 Variation 2: Catalysis by Complexes Generated In Situ 121
2.12.16.1.8.2.2 Method 2: Catalytic Intermolecular Hydroamination Reaction of Alkenes 126
2.12.16.1.9 Rare-Earth(III) Complexes Bearing LnX2-Type Ligands (n = 1, 2) 127
2.12.16.1.9.1 Synthesis of Rare-Earth(III) Complexes Bearing LnX2-Type Ligands (n = 1, 2) 127
2.12.16.1.9.1.1 Method 1: Salt Metathesis 127
2.12.16.1.9.1.2 Method 2: Amine or Alkane Elimination 129
2.12.16.1.9.1.2.1 Variation 1: From Isolated Homoleptic Complexes 129
2.12.16.1.9.1.2.2 Variation 2: From Homoleptic Complexes Generated In Situ 133
2.12.16.1.9.2 Applications of Rare-Earth(III) Complexes Bearing LnX2-Type Ligands (n = 1, 2) in Organic Synthesis 135
2.12.16.1.9.2.1 Method 1: Catalytic Intramolecular Hydroamination Reactions of Alkynes and Alkenes 135
2.12.16.1.9.2.1.1 Variation 1: Catalysis by Isolated Complexes 135
2.12.16.1.9.2.1.2 Variation 2: Catalysis by Complexes Generated In Situ 138
2.12.16.1.10 Rare-Earth(III) Complexes Bearing L3-Type Ligands 142
2.12.16.1.10.1 Synthesis of Rare-Earth(III) Complexes Bearing L3-Type Ligands 143
2.12.16.1.10.1.1 Method 1: Ligand Substitution 143
2.12.16.1.10.1.2 Method 2: Alkane Elimination 144
2.12.16.1.10.2 Applications of Rare-Earth(III) Complexes Bearing L3-Type Ligands in Organic Synthesis 145
2.12.16.1.10.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkenes 145
2.12.16.1.11 Homoleptic Tris(silylamido)– and Trialkyl–Rare-Earth(III) Complexes 146
2.12.16.1.11.1 Synthesis of Homoleptic Tris(silylamido)– and Trialkyl–Rare-Earth(III) Complexes 146
2.12.16.1.11.1.1 Method 1: Salt Metathesis 146
2.12.16.1.11.2 Applications of Homoleptic Tris(silylamido)– and Trialkyl–Rare-Earth(III) Complexes in Organic Synthesis 149
2.12.16.1.11.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkynes and Alkenes 149
Volume 18: Four Carbon--Heteroatom Bonds: X--C==X, X==C==X, X2C==X, CX4 158
18.3 Product Class 3: Carbonic Acid Halides 158
18.3.7 Carbonic Acid Halides 158
18.3.7.1 Carbonic Dihalides 158
18.3.7.1.1 Synthesis of Carbonic Dihalides 158
18.3.7.1.1.1 Method 1: Synthesis by Halogen Exchange 158
18.3.7.1.1.1.1 Variation 1: Fluorination of Phosgene 158
18.3.7.1.1.1.2 Variation 2: Bromination of Phosgene 159
18.3.7.1.1.2 Method 2: Synthesis by Oxidation of Tetrahalomethanes 160
18.3.7.1.1.2.1 Variation 1: Reaction of Trichlorofluoromethane with Sulfur Trioxide 160
18.3.7.1.1.2.2 Variation 2: Reaction of Tribromofluoromethane with Sulfur Trioxide 160
18.3.7.1.1.2.3 Variation 3: Reaction of Tetrabromomethane with Sulfuric Acid 161
18.3.7.1.1.3 Method 3: Synthesis by Reaction of Bromine Trifluoride with Carbon Monoxide 162
18.3.7.2 Haloformate Esters 162
18.3.7.2.1 Synthesis of Haloformate Esters 162
18.3.7.2.1.1 Method 1: Synthesis by Halogen Exchange 163
18.3.7.2.1.1.1 Variation 1: Reaction of Chloroformates with Sodium Fluoride and a Crown Ether 163
18.3.7.2.1.1.2 Variation 2: Reaction of Chloroformates with an Organotin Fluoride Reagent 163
18.3.7.2.1.1.3 Variation 3: Reaction of Chloroformates with Thallium(I) Fluoride 164
18.3.7.2.1.1.4 Variation 4: Reaction of Chloroformates with Sodium Iodide 167
18.3.7.2.1.2 Method 2: Synthesis by Conversion of Alcohols 168
18.3.7.2.1.2.1 Variation 1: Reaction with Carbonyl Difluoride and Potassium Fluoride 168
18.3.7.2.1.2.2 Variation 2: Reaction with Carbonyl Chloride Fluoride 169
18.3.7.2.1.2.3 Variation 3: Reaction with Carbonyl Bromide Fluoride 171
18.3.7.2.1.2.4 Variation 4: Reaction with Carbonyl Dibromide 171
18.3.7.2.1.3 Method 3: Synthesis by Reaction of Alkyl Carbamates with Sodium Nitrite and Hydrogen Fluoride–Pyridine Complex 172
18.3.7.2.1.4 Method 4: Synthesis by Reaction of Cyclic Ethers with Carbonyl Chloride Fluoride 173
18.3.7.2.1.5 Method 5: Synthesis by Reaction of Aldehydes and Ketones with Carbonyl Difluoride 174
18.3.7.2.1.6 Method 6: Synthesis by Reaction of Trifluoromethyl Hypofluorite with Carbon Monoxide 174
18.3.7.3 Halothioformate Esters, Halocarbonylsulfenyl Halides, and Halocarbonyl Disulfides 175
18.3.7.3.1 Synthesis of Halothioformate Esters, Halocarbonylsulfenyl Halides, and Halocarbonyl Disulfides 175
18.3.7.3.1.1 Method 1: Synthesis by Halogen Exchange 175
18.3.7.3.1.1.1 Variation 1: Reaction of Chlorothioformate S-Esters with Hydrogen Fluoride 176
18.3.7.3.1.1.2 Variation 2: Reaction of Chlorocarbonylsulfenyl Chloride with Antimony(III) Fluoride 176
18.3.7.3.1.1.3 Variation 3: Reaction of Fluorocarbonylsulfenyl Chloride with Bromotrimethylsilane 177
18.3.7.3.1.1.4 Variation 4: Reaction of Fluorocarbonylsulfenyl Bromide with Boron Trichloride 177
18.3.7.3.1.1.5 Variation 5: Reaction of Chlorocarbonylsulfenyl Chloride with Boron Tribromide 177
18.3.7.3.1.2 Method 2: Synthesis by Reaction of Sulfenyl Chlorides with Sulfuric Acid 178
18.3.7.3.1.3 Method 3: Synthesis by Reaction of Sulfenyl Chlorides with O-Alkyl Chlorothioformates 178
18.3.7.3.1.4 Method 4: Synthesis by Iron-Catalyzed Rearrangement of O-Alkyl Chlorothioformates 179
18.3.7.4 Carbamoyl Halides 180
18.3.7.4.1 Synthesis of Carbamoyl Halides 180
18.3.7.4.1.1 Method 1: Synthesis by Reaction of Secondary Amines 180
18.3.7.4.1.1.1 Variation 1: Reaction with Carbonyl Difluoride 180
18.3.7.4.1.1.2 Variation 2: Reaction with Dibromodifluoromethane Followed by Hydrolysis 181
18.3.7.4.1.2 Method 2: Synthesis by Reaction of Amides or Lactams 182
18.3.7.4.1.2.1 Variation 1: Reaction with Carbonyl Difluoride 182
18.3.7.4.1.3 Method 3: Synthesis by Reaction of C==N Containing Compounds 183
18.3.7.4.1.3.1 Variation 1: Reaction of Isocyanates, Imines, and Hydrogen Cyanide with Carbonyl Difluoride and Cesium Fluoride 183
18.3.7.4.1.3.2 Variation 2: Reaction of Isothiocyanates with Carbonyl Difluoride, Mercury(II) Fluoride, and Cesium Fluoride 185
18.3.7.4.1.3.3 Variation 3: Reaction of Isocyanates with Poly(hydrogen fluoride)–Pyridine Complex 186
18.3.7.4.1.4 Method 4: Synthesis by Reaction of N,N-Disubstituted Formamides with a Phosphorus(III) Halide Followed by a Thionyl Halide 187
18.3.7.4.1.5 Method 5: Synthesis by Reaction of N,N-Disubstituted Formamides with Sulfur Tetrafluoride Followed by Hydrolysis 187
18.3.7.4.1.6 Method 6: Synthesis by Reaction of Bis(perfluoroalkyl)(trifluoromethyl)amines with Oleum 188
18.3.7.4.1.7 Method 7: Synthesis by Reaction of S-Alkyl Thiocarbamates with Halogens 189
18.3.7.4.1.8 Method 8: Synthesis by Reaction of 3-Aryl-4-halosydnones with Hydrogen Halides 190
18.4 Product Class 4: Acyclic and Cyclic Carbonic Acids and Esters, and Their Sulfur, Selenium, and Tellurium Analogues 192
18.4.45 Acyclic and Cyclic Carbonic Acids and Esters, and Their Sulfur, Selenium, and Tellurium Analogues 192
18.4.45.1 Acyclic Carbonate Diesters 192
18.4.45.1.1 Synthesis of Acyclic Carbonate Diesters 192
18.4.45.1.1.1 Method 1: Reactions of Alcohols and Phenols with Derivatives of Carbonic Acid 192
18.4.45.1.1.1.1 Variation 1: Alkoxycarbonylation of Alcohols and Phenols 192
18.4.45.1.1.1.2 Variation 2: Coupling Using 1,1'-Carbonyldiimidazole 194
18.4.45.1.1.1.3 Variation 3: Transcarbonylation Using Dialkyl Carbonates 195
18.4.45.1.1.2 Method 2: Reaction of Formate Derivatives with Carbonyl Compounds 197
18.4.45.1.1.2.1 Variation 1: Addition of Formate Derivatives to Aldehydes 197
18.4.45.1.1.2.2 Variation 2: Reaction of Enolates with Formate Derivatives 199
18.4.45.1.1.3 Method 3: Addition of Carbon Dioxide 200
18.4.45.1.1.4 Method 4: Addition of Carbon Monoxide 201
18.4.45.1.1.5 Method 5: Alkylation of Metal Carbonates 201
18.4.45.1.1.6 Method 6: Rearrangements 202
18.4.45.1.1.7 Method 7: Reaction of Difluoro(diiodo)methane with Alcohols and Phenols 204
18.4.45.1.2 Applications of Acyclic Carbonate Diesters in Organic Synthesis 204
18.4.45.1.2.1 Method 1: Application of Dimethyl Carbonate as a Solvent in Green Chemistry 204
18.4.45.1.2.2 Method 2: Application in Transition-Metal-Catalyzed Cross-Coupling Reactions 204
18.4.45.1.2.3 Method 3: Use as a Photoremovable Protecting Group 206
18.4.45.2 Cyclic Carbonate Diesters 206
18.4.45.2.1 Synthesis of Cyclic Carbonate Diesters 206
18.4.45.2.1.1 Method 1: Transfer of the Carbonyl Group to Diols 206
18.4.45.2.1.1.1 Variation 1: Coupling Using Bis(trichloromethyl) Carbonate (Triphosgene) 206
18.4.45.2.1.1.2 Variation 2: Coupling Using 1,1'-Carbonyldiimidazole 207
18.4.45.2.1.1.3 Variation 3: Transcarbonylation Using Dimethyl Carbonate 207
18.4.45.2.1.1.4 Variation 4: One-Pot Conversion of Alkenes 208
18.4.45.2.1.2 Method 2: Gold(I)-Catalyzed Cyclization of 1,6-Enynes 210
18.4.45.2.1.3 Method 3: Iodocarbonate Cyclization of 1,5-Enynes 211
18.4.45.2.1.4 Method 4: Addition to Carbon Dioxide 211
18.4.45.2.1.4.1 Variation 1: Reaction with Propargylic Alcohols 211
18.4.45.2.1.4.2 Variation 2: Reaction with Oxiranes 213
18.4.45.2.1.5 Method 5: Addition to Carbon Monoxide 214
18.4.45.2.2 Applications of Cyclic Carbonate Diesters in Organic Synthesis 215
18.4.45.2.2.1 Method 1: Application as a Solvent in Green Chemistry 215
18.4.45.3 Bis(trihalomethyl) Carbonates 216
18.4.45.3.1 Synthesis of Bis(trihalomethyl) Carbonates 216
18.4.45.3.2 Applications of Bis(trihalomethyl) Carbonates in Organic Synthesis 217
18.4.45.3.2.1 Method 1: Synthesis of Acid Chlorides Using Bis(trichloromethyl) Carbonate 217
18.4.45.3.2.1.1 Variation 1: Chlorination of Carboxylic Acids 217
18.4.45.3.2.1.2 Variation 2: Chlorocarbonylation of Diazo Compounds 217
18.4.45.3.2.2 Method 2: Chlorination of Alcohols Using Bis(trichloromethyl) Carbonate 218
18.4.45.3.2.3 Method 3: Chlorocarbonylation of Hydroxy and Thiol Groups Using Bis-(trichloromethyl) Carbonate 219
18.4.45.3.2.4 Method 4: Preparation of Isocyanates from Amines Using Bis(trichloromethyl) Carbonate 221
18.4.45.3.2.5 Method 5: Preparation of Isocyanides Using Bis(trichloromethyl) Carbonate 222
18.4.45.4 Dicarbonate Diesters 223
18.4.45.4.1 Synthesis of Dicarbonate Diesters 223
18.4.45.4.2 Applications of Dicarbonate Diesters in Organic Synthesis 223
18.4.45.4.2.1 Method 1: Conversion of Alcohols or Phenols into Unsymmetrical Carbonates 223
18.4.45.4.2.2 Method 2: Decarboxylative Esterification of Carboxylic Acids 223
18.4.45.5 Tricarbonate Diesters 224
18.4.45.5.1 Synthesis of Tricarbonate Diesters 224
18.4.45.5.2 Applications of Tricarbonate Diesters in Organic Synthesis 224
18.4.45.5.2.1 Method 1: Synthesis of Oxazolidine-2,5-diones Using Di-tert-butyl Tricarbonate 224
18.4.45.6 Carbamic Carbonic Anhydride O,N-Diesters 225
18.4.45.6.1 Synthesis of Carbamic Carbonic Anhydride O,N-Diesters 225
18.4.45.7 Carbonic Sulfonic Anhydride Esters 225
18.4.45.7.1 Synthesis of Carbonic Sulfonic Anhydride Esters 226
18.4.45.7.2 Applications of Carbonic Sulfonic Anhydride Esters in Organic Synthesis 226
18.4.45.7.2.1 Method 1: Synthesis of Carbonates and Thiocarbonates via Mesyl Carbonates 226
18.4.45.8 O-Amino Carbonate Derivatives 226
18.4.45.8.1 Synthesis of O-Amino Carbonate Derivatives 227
18.4.45.9 Metal Complexes of Thiocarbonic Acid O-Monoesters 227
18.4.45.9.1 Synthesis of Metal Complexes of Thiocarbonic Acid O-Monoesters 228
18.4.45.10 Acyclic Thiocarbonate O,S-Diesters 228
18.4.45.10.1 Synthesis of Acyclic Thiocarbonate O,S-Diesters 228
18.4.45.10.1.1 Method 1: Reaction of Thiols with Derivatives of Carbonic Acid 228
18.4.45.10.1.1.1 Variation 1: Alkoxycarbonylation of Thiols 228
18.4.45.10.1.1.2 Variation 2: Reaction Using Bis(trichloromethyl) Carbonate 228
18.4.45.10.1.1.3 Variation 3: Reaction Using Other tert-Butoxycarbonyl Reagents 229
18.4.45.10.1.2 Method 2: Reductive Cleavage of Disulfides 229
18.4.45.11 Cyclic Thiocarbonate O,S-Diesters 230
18.4.45.11.1 Synthesis of Cyclic Thiocarbonate O,S-Diesters 230
18.4.45.11.1.1 Method 1: Substitution of 1,1'-Carbonyldiimidazole 230
18.4.45.11.1.2 Method 2: Hydrolysis of Oxathiolan-2-imine Derivatives 231
18.4.45.11.1.3 Method 3: Addition to Carbon Monoxide 232
18.4.45.11.1.4 Method 4: Palladium-Catalyzed Cyclocarbonylation of 2-Sulfanylphenols 233
18.4.45.12 Thiocarbonate O,S-Diester S-Oxides 233
18.4.45.12.1 Synthesis of Thiocarbonate O,S-Diester S-Oxides 233
18.4.45.12.1.1 Method 1: Oxidation of Thiocarbonate O,S-Diesters 233
18.4.45.13 Alkoxycarbonyl Thiocyanates 233
18.4.45.13.1 Synthesis of Alkoxycarbonyl Thiocyanates 234
18.4.45.13.1.1 Method 1: Reaction of (Methoxycarbonyl)sulfenyl Chloride with Silver Cyanide 234
18.4.45.14 S-Sulfanyl Derivatives of Thiocarbonate O-Esters 234
18.4.45.14.1 Synthesis of S-Sulfanyl Derivatives of Thiocarbonate O-Esters 234
18.4.45.14.1.1 Method 1: Reactions of (Methoxycarbonyl)sulfenyl Chloride 234
18.4.45.14.1.1.1 Variation 1: With Silver(I) Thiocyanate 234
18.4.45.14.1.1.2 Variation 2: With Bis(trifluoromethanethiolato)mercury(II) 234
18.4.45.15 S-Amino Thiocarbonate O-Esters 235
18.4.45.15.1 Synthesis of S-Amino Thiocarbonate O-Esters 235
18.4.45.15.1.1 Method 1: Hydrolysis of an Isocyanate Derivative 235
18.4.45.16 Acyclic Dithiocarbonate S,S-Diesters 235
18.4.45.16.1 Synthesis of Acyclic Dithiocarbonate S,S-Diesters 235
18.4.45.16.1.1 Method 1: Reaction of Thiols with Carbon Dioxide 235
18.4.45.17 Cyclic Dithiocarbonate S,S-Diesters 236
18.4.45.17.1 Synthesis of Cyclic Dithiocarbonate S,S-Diesters 236
18.4.45.17.1.1 Method 1: Reaction of Dithiols with 1,1'-Carbonyldiimidazole 236
18.4.45.17.1.2 Method 2: Oxidation of Cyclic Trithiocarbonates 237
18.4.45.17.1.3 Method 3: Reaction of an Epoxide and Carbon Disulfide under High Pressure 237
18.4.45.17.2 Applications of Cyclic Dithiocarbonate S,S-Diesters in Organic Synthesis 237
18.4.45.17.2.1 Method 1: Ring Enlargement of 1,3-Dithian-2-one with Lithium Acetylides 237
18.4.45.17.2.2 Method 2: Synthesis of Tetrathiafulvalenes 238
18.4.45.18 Acyclic Selenocarbonate O,Se-Diesters 238
18.4.45.18.1 Synthesis of Acyclic Selenocarbonate O,Se-Diesters 238
18.4.45.18.1.1 Method 1: Two-Step Sequence Using Derivatives of Carbonic Acid and Diphenyl Diselenide 239
18.4.45.18.1.1.1 Variation 1: Using 1,1'-Carbonyldiimidazole 239
18.4.45.18.1.1.2 Variation 2: Using Bis(trichloromethyl) Carbonate 239
18.4.45.18.1.2 Method 2: Reaction of Lithium Enolates with Selenium/Carbon Monoxide 239
18.4.45.19 Acyclic Tellurocarbonate O,Te-Diesters 240
18.4.45.19.1 Synthesis of Acyclic Tellurocarbonate O,Te-Diesters 240
Volume 26: Ketones 248
26.9 Product Class 9: Enones 248
26.9.5 Enones 248
26.9.5.1 ß,.-Unsaturated Ketones 248
26.9.5.1.1 Synthesis of ß,.-Unsaturated Ketones 248
26.9.5.1.1.1 Method 1: Oxidation of Homoallylic Alcohols 248
26.9.5.1.1.2 Method 2: Allylation of Acyl Compounds and Nitriles by Allyl Derivatives 250
26.9.5.1.1.2.1 Variation 1: Allylation of Acyl Chlorides by Allylsilanes and Acyl Cyanides by Allyl Bromides 250
26.9.5.1.1.2.2 Variation 2: Transition-Metal-Catalyzed Allylation of Acylsilanes and Acylstannanes by Allyl Trifluoroacetates, and Acylzirconocenes by Allyl Halides and 4-Toluenesulfonates 251
26.9.5.1.1.2.3 Variation 3: Barbier-Type Allylation of Nitriles by Allyl Bromides 253
26.9.5.1.1.3 Method 3: Tin- and Boron-Mediated Allylation of a-Halo Aryl Ketones by Allylstannanes 254
26.9.5.1.1.4 Method 4: Alkenylation of Enol Ethers by Alkenyl and Alkynyl Reagents 256
26.9.5.1.1.4.1 Variation 1: Alkenylation of Silyl Enol Ethers by an Alkenylbismuth Reagent 256
26.9.5.1.1.4.2 Variation 2: Gallium-Mediated Alkenylation of Silyl Enol Ethers by (Trimethylsilyl)acetylenes 256
26.9.5.1.1.5 Method 5: Transition-Metal-Catalyzed Alkenylation of Ketones and Ketone Derivatives by Alkenyl Halides and Trifluoromethanesulfonates 257
26.9.5.1.1.5.1 Variation 1: Palladium-Catalyzed Intramolecular Alkenylation of Ketones by Alkenyl Halides 258
26.9.5.1.1.5.2 Variation 2: Palladium- and Nickel-Catalyzed Intermolecular Alkenylation of Ketones by Alkenyl Halides and Trifluoromethanesulfonates 262
26.9.5.1.1.5.3 Variation 3: Palladium-Catalyzed Alkenylation of Enol Acetates by Alkenyl Bromides 264
26.9.5.1.1.5.4 Variation 4: Palladium-Catalyzed Alkenylation of Enol Ethers by Alkenyl Halides and Trifluoromethanesulfonates 264
26.9.5.1.1.6 Method 6: Nickel-Catalyzed Enantioselective Alkenylation of a-Bromo Ketones by Alkenylzirconocenes 266
26.9.5.1.1.7 Method 7: Ruthenium-Catalyzed Hydroacylation of Dienes by Aldehydes and Alcohols 267
26.9.5.1.1.8 Method 8: Ruthenium-Catalyzed Hydration Dimerization of Ethynylbenzenes 269
26.9.5.1.1.9 Method 9: Alkenylation of Ketones by Terminal Alkynes 270
26.9.5.1.1.9.1 Variation 1: Tin-Mediated Alkenylation of Ketones by Terminal Alkynes 270
26.9.5.1.1.9.2 Variation 2: Superbase-Mediated Alkenylation of Ketones by Ethynylbenzenes 271
26.12 Product Class 12: Seven-Membered and Larger-Ring Cyclic Ketones 274
26.12.1 Synthesis of Product Class 12 277
26.12.1.1 Method 1: Intramolecular Cyclization Reactions 277
26.12.1.1.1 Variation 1: Cyclization of Suberic Acid and Related Ester Derivatives 277
26.12.1.1.2 Variation 2: Ziegler Cyclization of Dinitriles 279
26.12.1.1.3 Variation 3: Acyloin Condensation of Diesters 280
26.12.1.1.4 Variation 4: Intramolecular Michael Addition Reactions 282
26.12.1.1.5 Variation 5: Intramolecular Radical Cyclization Reactions 284
26.12.1.1.6 Variation 6: Intramolecular Wittig/Horner–Wadsworth–Emmons and Related Reactions 286
26.12.1.1.7 Variation 7: Ring-Closing Metathesis 288
26.12.1.1.8 Variation 8: Transition-Metal-Catalyzed Cross-Coupling Reactions 293
26.12.1.2 Method 2: Cycloaddition Reactions 294
26.12.1.2.1 Variation 1: [5 + 2]-Cycloaddition Reactions 294
26.12.1.2.2 Variation 2: [4 + 3] Cycloaddition Reactions 301
26.12.1.2.3 Variation 3: [6 + 4] Cycloadditions of Tropones with Dienes 305
26.12.1.3 Method 3: Ring Enlargement 308
26.12.1.3.1 Variation 1: Pinacol and Pinacol-Type Rearrangements 308
26.12.1.3.2 Variation 2: Ring Enlargement of [4.1.0] Bicyclic Ring Systems 315
26.12.1.3.3 Variation 3: Ring Enlargement of [3.2.0] Bicyclic Ring Systems 318
26.12.1.3.4 Variation 4: Ring Enlargement of [10.3.0] Bicyclic Ring Systems 320
26.12.1.3.5 Variation 5: Electrocyclic Ring Expansions 321
26.13 Product Class 13: a-Aryl and a-Hetaryl Ketones 332
26.13.1 Synthesis of Product Class 13 332
26.13.1.1 Arylation of Ketones and Ketone Enolates by Aryl and Hetaryl Halides 332
26.13.1.1.1 Method 1: Arylation of Ketones Using the SNAr Mechanism 332
26.13.1.1.2 Method 2: Arylation of Ketones and Ketone Enolates Using the SRN1 Mechanism 333
26.13.1.1.3 Method 3: Palladium-Catalyzed Arylation of Ketones 337
26.13.1.1.3.1 Variation 1: Nonenantioselective Arylation 337
26.13.1.1.3.2 Variation 2: Enantioselective Arylation 365
26.13.1.1.4 Method 4: Nickel-Catalyzed Arylation of Ketones 370
26.13.1.1.4.1 Variation 1: Nonenantioselective Arylation 370
26.13.1.1.4.2 Variation 2: Enantioselective Arylation 371
26.13.1.2 Arylation of ß-Diketones by Aryl Halides 374
26.13.1.2.1 Method 1: Copper-Catalyzed Arylation 374
26.13.1.3 Arylation of Enol Ethers by Aryl and Hetaryl Halides 375
26.13.1.3.1 Method 1: UV-Mediated Arylation Using the SN1 Mechanism 375
26.13.1.3.2 Method 2: Palladium-Catalyzed Arylation 376
26.13.1.3.2.1 Variation 1: Nonstereoselective Arylation 376
26.13.1.3.2.2 Variation 2: Stereoselective Arylation 382
26.13.1.4 Arylation of Enol Esters by Aryl and Hetaryl Halides 385
26.13.1.4.1 Method 1: Palladium-Catalyzed Arylation 385
26.13.1.5 Arylation of Ketones by Aryl Sulfonates 388
26.13.1.5.1 Method 1: Palladium-Catalyzed Arylation 388
26.13.1.5.1.1 Variation 1: Nonenantioselective Arylation 388
26.13.1.5.1.2 Variation 2: Enantioselective Arylation 392
26.13.1.5.2 Method 2: Nickel-Catalyzed Enantioselective Arylation 393
26.13.1.6 Arylation of Enol Acetates by Arenediazonium Salts 394
26.13.1.6.1 Method 1: Base-Mediated Arylation 394
26.13.1.6.2 Method 2: Ruthenium-Catalyzed Arylation Using Blue Light 395
26.13.1.7 Arylation of a-Halo Ketones by Arylboron Reagents 396
26.13.1.7.1 Method 1: Base-Mediated Arylation by 9-Phenyl-9-borabicyclo[3.3.1]nonane 396
26.13.1.7.2 Method 2: Nickel-Catalyzed Arylation by Arylboronic Acids 397
26.13.1.8 Carbonylative Arylation of Benzyl Halides by Arylboron Reagents 398
26.13.1.8.1 Method 1: Palladium-Catalyzed Carbonylative Arylation by Arylboronic Acids 398
26.13.1.8.2 Method 2: Palladium-Catalyzed Carbonylative Arylation by Aryltrifluoroborates 399
26.13.1.9 Arylation of Ketones by Arylbismuth Reagents 400
26.13.1.9.1 Method 1: Multiple Arylation by Triphenylbismuth(V) Carbonate 400
26.13.1.10 Arylation of Ketones and a-Chloro Ketones by Nitroarenes Using Nucleophilic Aromatic Substitution Mechanisms 401
26.13.1.10.1 Method 1: Arylation of Ketones Using the Oxidative Nucleophilic Substitution of Hydrogen Mechanism 401
26.13.1.10.2 Method 2: Arylation of a-Chloro Ketones Using the Vicarious Nucleophilic Substitution Mechanism 402
26.13.2 Conclusions 403
Volume 32: X--Ene--X (X = F, Cl, Br, I, O, S, Se, Te, N, P), Ene--Hal, and Ene--O Compounds 406
32.4 Product Class 4: Haloalkenes 406
32.4.3 Haloalkenes 406
32.4.3.1 Fluoroalkenes 406
32.4.3.1.1 Synthesis from Aldehydes and Ketones 406
32.4.3.1.1.1 Method 1: Reaction with Fluoro Sulfones 406
32.4.3.1.1.2 Method 2: Reaction with a-Fluoroalkanoic Esters 417
32.4.3.1.1.2.1 Variation 1: Base-Mediated Addition to Carbonyl Compounds 417
32.4.3.1.1.2.2 Variation 2: Reductive Addition to Carbonyl Compounds 418
32.4.3.1.1.2.3 Variation 3: Palladium-Catalyzed Addition to Aldehydes 420
32.4.3.1.2 Synthesis from Allenes and Alkynes 420
32.4.3.1.2.1 Method 1: Hydroxyfluorination of Allenes 420
32.4.3.1.2.2 Method 2: Transition-Metal-Catalyzed Fluorination of Alkynes and Allenes 422
32.4.3.1.2.2.1 Variation 1: Transition-Metal-Catalyzed Hydrofluorination 422
32.4.3.1.2.2.2 Variation 2: Transition-Metal-Catalyzed Electrophilic Fluorination 424
32.4.3.1.3 Synthesis from Allyl Fluorides 426
32.4.3.1.3.1 Method 1: Nucleophilic or Reductive Displacement of Allylic gem-Difluorides 426
32.4.3.1.4 Synthesis from Other Fluoroalkenes 429
32.4.3.1.4.1 Method 1: Synthesis by Reductive Defluorination 429
32.4.3.1.4.1.1 Variation 1: Transition-Metal-Mediated Hydrodefluorination 429
32.4.3.1.4.1.2 Variation 2: Defluorination of Silylfluorostyrenes 430
32.4.3.1.4.2 Method 2: Palladium-Catalyzed Cross Coupling of Vinyl Fluorides 432
32.4.3.1.4.2.1 Variation 1: Stille-Type Cross Coupling 432
32.4.3.1.4.2.2 Variation 2: Suzuki-Type Cross Coupling 434
32.4.3.1.4.2.3 Variation 3: Negishi-Type Cross Coupling 435
32.4.3.1.4.2.4 Variation 4: Direct C-H Fluoroalkenylation 436
32.4.3.1.4.2.5 Variation 5: Palladium-Catalyzed C-F Activation 437
32.4.3.1.4.2.6 Variation 6: Mizoroki–Heck-Type Cross Coupling 437
32.4.3.1.4.2.7 Variation 7: Palladium-Catalyzed Carbonylation 438
32.4.3.1.4.3 Method 3: Reductive Cyclization of 1,1-Difluoro-1,6-enynes 439
32.4.3.1.4.4 Method 4: Addition of (Fluorovinyl)silanes to Carbonyl Compounds 439
32.4.3.1.4.5 Method 5: Synthesis from (Fluoroalkenyl)iodonium Salts 440
32.4.3.1.5 Synthesis from Methylene- and Vinylidenecyclopropanes 442
32.4.3.1.5.1 Method 1: Ring Opening of Methylene- and Vinylidenecyclopropanes 442
32.4.3.1.6 Synthesis from 2-Fluoroalkanols 442
32.4.3.1.7 Synthesis from Thiocarboxylic Acid Derivatives 443
Volume 34: Fluorine 448
34.9 Product Class 9: ß-Fluoro Alcohols 448
34.9.2 ß-Fluoro Alcohols 448
34.9.2.1 Method 1: Synthesis by Ring Opening of Epoxides 449
34.9.2.1.1 Variation 1: With Boron Trifluoride–Diethyl Ether Complex 449
34.9.2.1.2 Variation 2: With Tetrafluoroboric Acid–Diethyl Ether Complex 451
34.9.2.1.3 Variation 3: With Benzoyl Fluoride in the Presence of a Chiral Lewis Acid 455
34.9.2.2 Method 2: Synthesis by Reduction of a-Fluoro Carbonyl Compounds 458
34.9.2.2.1 Variation 1: With Achiral Reducing Agents 458
34.9.2.2.2 Variation 2: With Chiral Reducing Agents 463
34.9.2.3 Method 3: Synthesis by Fluoromethylation of Carbonyl Compounds 466
34.9.2.3.1 Variation 1: With 2-Fluoro-1,3-benzodithiole 1,1,3,3-Tetraoxide 467
34.9.2.3.2 Variation 2: With Fluorobis(phenylsulfonyl)methane 469
34.9.2.4 Method 4: Synthesis by Hydroxyfluorination of Alkenes 470
34.9.2.4.1 Variation 1: With Selectfluor in Water 470
34.9.2.4.2 Variation 2: With Selectfluor in the Presence of a Chiral Phosphoric Acid 471
Author Index 476
Abbreviations 498
List of All Volumes 504

2.12.16 Organometallic Complexes of Scandium, Yttrium, and the Lanthanides (Update 2013)


J. Hannedouche

2.12.16.1 Rare Earth Metal Catalyzed Hydroamination Reactions


This section deals with the syntheses and catalytic applications of rare-earth complexes with oxidation state +2 or +3 in the direct addition of an amine onto an unactivated carbon–carbon triple or double bond, the so-called hydroamination reaction. The term “rare earth” refers to the group 3 metal elements including scandium, yttrium, and the lanthanide series from lanthanum to lutetium, and is abbreviated Ln. This section is not intended to comprehensively review all title complexes of the product subclasses but only those which find applications as catalysts in the hydroamination reaction. Typical complexes of the product subclass contain at least one kinetically labile, σ-bonded bis(trimethylsilyl)amido, bis(dimethylsilyl)amido, diisopropylamido, bis(trimethylsilyl)methyl, trimethylsilyl, or methyl ligand which, under the hydroamination reaction conditions, is promptly protonated by the amino substrate to generate a new metal amide species. This species will further react with the alkyne or the alkene functionality through a σ-insertive or noninsertive mechanism to deliver the hydroamination product.[16] With few exceptions, the relative reactivity of rare-earth complexes in hydroamination is poorly influenced by the nature of the σ-bonded ligand [except for the less basic bis(dimethylsilyl)amido ligand][7,8] and is mainly governed by the ionic size of the metal and the steric/electronic properties of the ancillary ligand(s). The metal ionic radius increases going from scandium (the smallest) to lanthanum (the largest), and from lutetium to cerium.[9] Due to the higher reactivity and electron density of alkynes relative to alkenes, the hydroamination of alkynes is more readily achieved than that of alkenes. As a general trend, the rate of cyclohydroamination reaction is consistent with classical, stereoelectronically controlled cyclization processes; strictly speaking, the rate of formation of five-membered rings is higher than that of six- and, to a higher extent, seven-membered rings.

Almost all of the complexes described in this product class should be synthesized, handled, and stored under an inert atmosphere using Schlenk or glovebox techniques. All solvents should be dried and degassed prior to use. With some exceptions, most of the catalytic applications are conducted in an NMR tube under inert atmosphere, and the reported yields are determined by NMR spectroscopy or gas chromatography using an internal standard. The hydroamination reactions are performed in noncoordinative aliphatic or aromatic solvents. The relevant literature up until mid-2012 has been covered.

2.12.16.1.1 Rare-Earth(II) Complexes


Rare-earth complexes in oxidation state +2 are much less widely explored for catalytic hydroamination than those in the +3 oxidation state despite there being convenient routes to synthesize such lower-oxidation-state complexes. The most successful approach to these divalent complexes is salt metathesis of tetrahydrofuran-solvated ytterbium(II), europium(II), and samarium(II) iodide with potassium reagents. Although poorly investigated, ytterbium(II) and samarium(II) complexes nevertheless demonstrate the ability to catalyze the intramolecular hydroamination of alkynes and alkenes. Under the catalytic conditions, oxidation of the divalent lanthanide complexes to trivalent species is postulated.

2.12.16.1.1.1 Synthesis of Rare-Earth(II) Complexes

2.12.16.1.1.1.1 Method 1: Salt Metathesis

Tetrahydrofuran-solvated europium(II) and ytterbium(II) iodide are reacted with potassium complex 1 and potassium hexamethyldisilazanide in a 1:1:1 molar ratio ( Scheme 1).[10] After removal of potassium iodide by filtration and crystallization, bis(tetrahydrofuran)-solvated {[7-(isopropylimino)cyclohepta-1,3,5-trienyl]amido}ytterbium(II) 2 (Ln = Yb) and its europium(II) analogue are obtained as tiny brown (36% yield) and red crystals (17% yield), respectively. The use of iodide and potassium reagents in the course of the syntheses avoids coordination of lighter alkali halides such as lithium chloride.

An analogous procedure is applied for the preparation of bis(phosphorimidoyl)-methanide–ytterbium(II) iodide complex 4 as red crystals from potassium salt 3.[11] Complexes 2 and 4 are characterized by standard analytical and spectroscopic techniques, and their solid-state structures have been established by single-crystal X-ray diffraction. Solid-state analysis of complex 4 reveals that the ytterbium center is six coordinated with a long methanide carbon—metal bond. Bis(η5-pentamethylcyclopentadienyl)bis(tetrahydrofuran)samarium(II) (5) is prepared by a metathetic reaction between diiodobis(tetrahydrofuran)samarium(II) and potassium pentamethylcyclopentadienide.[12] Recrystallization from a tetrahydrofuran solution affords large purple crystals of a disolvate. X-ray crystallographic analysis of complex 5 confirms the structure typical of bent metallocenes.

 Scheme 1 Syntheses of Ytterbium(II), Europium(II), and Organosamarium(II) Complexes[1012]

Ln Yield (%) Ref
Eu 17 [10]
Yb 36 [10]
[Bis(trimethylsilyl)amido]{isopropyl[7-(isopropylimino)cyclohepta-1,3,5-trienyl]amido}bis(tetrahydrofuran)ytterbium(II)(2, Ln = Yb); Typical Procedure:[10]

THF was condensed at −196 °C onto a mixture of YbI2(THF)2 (0.5 mmol), complex 1 (0.121 g, 0.5 mmol), and KHMDS (0.100 g, 0.5 mmol). The mixture was then stirred for 36 h at rt. The red soln was filtered to remove KI, and then the solvent was removed under reduced pressure. Finally, the remaining powder was washed with pentane and crystallized (THF/pentane 1:3) to give tiny brown crystals; yield: 0.110 g (36%).

Bis(η5-pentamethylcyclopentadienyl)bis(tetrahydrofuran)samarium(II) (5):[12]

K(Cp*) (5.43 g, 31.2 mmol) was added to a stirred soln of SmI2(THF)2 (7.78 g, 14.2 mmol) in THF (75 mL) in a 125-mL Erlenmeyer flask. The color of the soln rapidly changed from blue-green to purple as off-white solids (KI) were formed. After 4 h at rt, the THF was removed by rotary evaporation and toluene (100 mL) was added. The resulting soln of product 5 with suspended potassium salts was stirred vigorously for 10 h and then filtered. The solvent was removed from the filtrate by rotary evaporation, leaving solid (Cp*)2Sm(THF)n (1 ≤ n ≤ 2). The degree of solvation was conveniently monitored by integration of the absorptions in the NMR spectrum in benzene-d6. Dissolving this solid in THF and then removing the solvent by rotary evaporation gave product 5; yield: 5.95 g (74%). Recrystallization (sat. THF soln at 30 °C, cooled to −25 °C overnight) gave large purple crystals; yield: 5.52 g in two crops (69%).

2.12.16.1.1.2 Applications of Rare-Earth(II) Complexes in Organic Synthesis

2.12.16.1.1.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkynes

Well-defined [bis(phosphorimidoyl)methanido]ytterbium(II) iodide complex 4 (see  Section 2.12.16.1.1.1.1) is applied as catalyst for the cyclohydroamination of pent-4-yn-1-amine and 5-phenylpent-4-yn-1-amine under mild to harsh conditions. In the presence of catalytic amounts of complex 4, pent-4-yn-1-amine and 5-phenylpent-4-yn-1-amine undergo highly regioselective cyclization to give 3,4-dihydro-2H-pyrrole derivatives 6 as the sole product ( Scheme 2). The best turnover frequency is reached with 2.8 mol% of complex 4 for the reaction of pent-4-yn-1-amine at 120 °C. Sluggish activity is observed at room temperature. A color change of the reaction mixture from red to yellow at the initial stage of the catalysis indicates in situ oxidation of ytterbium(II) to ytterbium(III).

 Scheme 2 Catalytic Cyclohydroamination of Pent-4-yn-1-amine and 5-Phenylpent-4-yn-1-amine[11]

R1 mol% of 4 Conditions TOFa (h−1) Yieldb (%) Ref
H 2.8 120 °C, 3 h 11.9 >95 [11]
H 1.4 60 °C, 192 h 0.22 60 [11]
Ph 5.3 120 °C, 6 h 3.15 >95 [11]
Ph 5.3 60 °C, 108 h 0.14 80 [11]
a TOF = turnover frequency.
b Determined by 1H NMR spectroscopy.
3,4-Dihydro-2H-pyrroles 6; General Procedure:[11]

Tetrahydrofuran-solvated...

Erscheint lt. Verlag 14.5.2014
Reihe/Serie Science of Synthesis
Verlagsort Stuttgart
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Technik
Schlagworte Acyclic Carbonic Acids • alpha-Aryl Ketones • alpha-Hetaryl Ketones • beta-Fluoro Alcohols • Carbonic Acid Halides • Chemie • Chemische Synthese • chemistry of organic compound • chemistry organic reaction • chemistry reference work • chemistry synthetic methods • compound functional group • compound organic synthesis • Cyclic Carbonic Acids • Cyclic Ketones • enones • esters • Haloalkenes • lanthanides • Mechanism • Method • methods in organic synthesis • methods peptide synthesis • Organic Chemistry • organic chemistry functional groups • organic chemistry reactions • organic chemistry review • organic chemistry synthesis • organic method • organic reaction • organic reaction mechanism • Organic Syntheses • organic synthesis • organic synthesis reference work • Organisch-chemische Synthese • Organische Chemie • organometallic complexes • Peptide synthesis • Practical • practical organic chemistry • Reaction • reference work • Review • review organic synthesis • review synthetic methods • Scandium • selenium • Sulfur • Synthese • Synthetic chemistry • Synthetic Methods • Synthetic Organic Chemistry • synthetic transformation • tellurium • Yttrium
ISBN-10 3-13-198381-7 / 3131983817
ISBN-13 978-3-13-198381-7 / 9783131983817
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Wasserzeichen)
Größe: 16,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Basiswissen der Chemie

von Charles E. Mortimer; Ulrich Müller

eBook Download (2019)
Georg Thieme Verlag KG
84,99