Chaos, Dynamics, and Fractals (eBook)
Cambridge University Press (Verlag)
978-1-107-29911-5 (ISBN)
This book develops deterministic chaos and fractals from the standpoint of iterated maps, but the emphasis makes it very different from all other books in the field. It provides the reader with an introduction to more recent developments, such as weak universality, multifractals, and shadowing, as well as to older subjects like universal critical exponents, devil's staircases and the Farey tree. The author uses a fully discrete method, a 'theoretical computer arithmetic', because finite (but not fixed) precision cannot be avoided in computation or experiment. This leads to a more general formulation in terms of symbolic dynamics and to the idea of weak universality. The connection is made with Turing's ideas of computable numbers and it is explained why the continuum approach leads to predictions that are not necessarily realized in computation or in nature, whereas the discrete approach yields all possible histograms that can be observed or computed.
This book develops deterministic chaos and fractals from the standpoint of iterated maps, but the emphasis makes it very different from all other books in the field. It provides the reader with an introduction to more recent developments, such as weak universality, multifractals, and shadowing, as well as to older subjects like universal critical exponents, devil''s staircases and the Farey tree. The author uses a fully discrete method, a ''theoretical computer arithmetic'', because finite (but not fixed) precision cannot be avoided in computation or experiment. This leads to a more general formulation in terms of symbolic dynamics and to the idea of weak universality. The connection is made with Turing''s ideas of computable numbers and it is explained why the continuum approach leads to predictions that are not necessarily realized in computation or in nature, whereas the discrete approach yields all possible histograms that can be observed or computed.
Erscheint lt. Verlag | 26.5.1994 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Technik | |
ISBN-10 | 1-107-29911-X / 110729911X |
ISBN-13 | 978-1-107-29911-5 / 9781107299115 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich