Application of Nanotechnology in Water Research
Wiley-Scrivener (Verlag)
978-1-118-49630-5 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei innerhalb Deutschlands
- Auch auf Rechnung
- Verfügbarkeit in der Filiale vor Ort prüfen
- Artikel merken
Details the water research applications of nanotechnology in various areas including environmental science, remediation, membranes, nanomaterials, and water treatment
At the nano size, materials often take on unique and sometimes unexpected properties that result in them being ‘tuned’ to build faster, lighter, stronger, and more efficient devices and systems, as well as creating new classes of materials. In water research, nanotechnology is applied to develop more cost-effective and high-performance water treatment systems, as well as to provide instant and continuous ways to monitor water quality.
This volume presents an array of cutting-edge nanotechnology research in water applications including treatment, remediation, sensing, and pollution prevention. Nanotechnology applications for waste water research have significant impact in maintaining the long-term quality, availability, and viability of water. Regardless of the origin, such as municipal or industrial waste water, its remediation utilizing nanotechnology can not only be recycled and desalinized, but it can simultaneously detect biological and chemical contamination.
Application of Nanotechnology in Water Research describes a broad area of nanotechnology and water research where membrane processes (nanofiltration, ultrafiltration, reverse osmosis, and nanoreactive membranes) are considered key components of advanced water purification and desalination technologies that remove, reduce, or neutralize water contaminants that threaten human health and/or ecosystem productivity and integrity. Various nanoparticles and nanomaterials that could be used in water remediation (zeolites, carbon nanotubes, self-assembled monolayer on mesoporous supports, biopolymers, single-enzyme nanoparticles, zero-valent iron nanoparticles, bimetallic iron nanoparticles, and nanoscale semiconductor photocatalysts) are discussed. The book also covers water-borne infectious diseases as well as water-borne pathogens, microbes, and toxicity approach.
Ajay Kumar Mishra is currently working as an Associate Professor in the Department of Applied Chemistry, University of Johannesburg, South Africa. He also holds the position of Adjunct Professor at Jiangsu University, China. He is a group leader of research areas for composites/nanocomposites, water research, bio-inorganic chemistry, and nanochemistry.
Preface xix
Part 1: General 1
1 Nanotechnology and Water: Ethical and Regulatory Considerations 3
Jillian Gardner and Ames Dhai
1.1 Introduction 3
1.2 Ethics and Nanotechnology 4
1.3 Legal and Regulatory Issues and Concerns Related to the Application of Nanotechnology in the Water Sector 14
1.4 Nanotechnology, Water and Human Health Research 17
1.5 Conclusion 18
References 19
2 Nanoparticles Released into Water Systems from Nanoproducts and Structural Nanocomposites Applications 21
James Njuguna, Laura Gendre and Sophia Sachse
2.1 Introduction 21
2.2 Case Study on Polyurethane/Organically-Modified Montmorillonite (PU/OMMT) Nanofoam Nanoparticles in Water Suspension 23
2.3 Methodology 25
2.4 Results and Discussion 27
2.5 Conclusion 32
Acknowledgement 33
References 33
Part 2: Remediation 37
3 Prospects for Immobilization of Microbial Sorbents on Carbon Nanotubes for Biosorption: Bioremediation of Heavy Metals Polluted Water 39
E. Fosso-Kankeu, A.F. Mulaba-Bafubiandi and A.K. Mishra
3.1 Dispersion of Metal Pollutants in Water Sources 40
3.2 Removal of Metal by Conventional Methods 41
3.3 Microbial Sorbents for Removal of Toxic Heavy Metals from Water 42
3.4 Immobilization of Microbial Sorbents on CNTs 50
3.5 Conclusion 54
References 54
4 Plasma Technology: A New Remediation for Water Purification with or without Nanoparticles 63
Pankaj Attri, Bharti Arora, Rohit Bhatia, P. Venkatesu and Eun Ha Choi
4.1 Introduction 63
4.2 Water Purification Using Advanced Oxidation Processes (AOP) 64
4.3 Nanoparticle Synthesis Using Plasma and Its Application towards Water Purification 65
4.4 Application of Plasma for Water Purification 67
4.5 Combined Action of Nanoparticles and Plasma for Water Purification 73
4.6 Conclusion 74
References 75
5 Polysaccharide-Based Nanosorbents in Water Remediation 79
R.B. Shrivastava, P. Singh, J. Bajpai and A.K. Bajpai
5.1 Introduction 80
5.2 Water Pollution 81
5.3 Hazardous Effects of Toxic Metal Ions 85
5.4 Technologies for Water Remediation 87
5.5 Shortcomings of the Technologies Used for Water Remediation 89
5.6 Nanotechnology 90
5.7 Polysaccharides 95
5.8 Advantages of Using Polysaccharides for Removal of Toxic Metal Ions 104
5.9 Brief Review of the Work Done 106
References 107
Part 3: Membranes & Carbon Nanotubes 115
6 The Use of Carbonaceous Nanomembrane Filter for Organic Waste Removal 117
Farheen Khan, Rizwan Wahab, Mohd. Rashid, Asif Khan, Asma Khatoon, Javed Musarrat and Abdulaziz A.Al-Khedhairy
6.1 Introduction 118
6.2 Organic Wastes and Organic Pollutant 120
6.3 Low-Cost Adsorbents 123
6.4 Heavy Metals 124
6.5 Composite Materials 127
6.6 Carbonaceous Materials 128
6.7 Experimental 132
6.8 Nanomaterials 136
6.9 Summary and Future Directions 139
References 139
7 Carbon Nanotubes in the Removal of Heavy Metal Ions from Aqueous Solution 153
M.A. Mamo and A.K. Mishra
7.1 Introduction 153
7.2 Synthesis of CNTs 155
7.3 Functionalization of Carbon Nanotubes 155
7.4 Adsorption of Heavy Metal Ions on Carbon Nanotubes 160
7.5 Competitive Adsorption 165
7.6 Summary and Conclusion 168
References 168
8 Application of Carbon Nanotube-Polymer Composites and Carbon Nanotube-Semiconductor Hybrids in Water Treatment 183
G. Mamba, X.Y. Mbianda and A.K. Mishra
8.1 Introduction 183
8.2 Classification of Dyes 184
8.3 Conventional Treatment Technologies for Textile Effluent 190
8.4 Conclusion 220
Acknowledgements 221
References 222
9 Advances in Nanotechnologies for Point-of-Use and Point-of-Entry Water Purification 229
Sabelo Dalton Mhlanga and Edward Ndumiso Nxumalo
9.1 Introduction 230
9.2 Nanotechnology-Enabled POU/POE Systems for Drinking Water Treatment 233
9.3 Absorptive Nanocomposites Polymers Based on Cyclodextrins 235
9.4 Nanotechnology-Based Membrane Filtration 244
9.5 Ceramic-Based Filters and Nanofibers 254
9.6 Challenges and Opportunities 259
References 262
Part 4: Nanomaterials 269
10 Mesoporous Materials as Potential Absorbents for Water Purification 271
Ephraim Vunain and Reinout Meijboom
10.1 Introduction 271
10.2 Generalized Synthesis of Mesoporous Materials 272
10.3 Common Method of Synthesizing Silicate Mesoporous Molecular Sieves 276
10.4 Adsorption of Heavy Metals 280
10.5 Conclusions 282
References 283
11 Removal of Fluoride from Potable Water Using Smart Nanomaterial as Adsorbent 285
Dinesh Kumar and Vaishali Tomar
11.1 Introduction 286
11.2 Technologies for Defluoridation 289
11.3 Conclusions 303
Acknowledgement 303
References 303
12 Chemical Nanosensors for Monitoring Environmental Pollution 309
Sadanand Pandey and Shivani B Mishra
12.1 Introduction 309
12.2 Conclusion 325
12.3 Challenges and Future Prospect 326
Acknowledgements 327
References 327
13 Reduction of 4-Nitrophenol as a Model Reaction for Nanocatalysis 333
Jihyang Noh and Reinout Meijboom
13.1 Introduction 333
13.2 Kinetic Evaluation and Mechanism of 4-NP Reduction 337
13.3 Effect of Various Conditions 360
13.4 Synthetic Methods of Metal Nanocomposites and Their 4-NP Catalysis 364
13.5 Conclusion 395
References 395
Part 5: Water Treatment 407
14 Doped Diamond Electrodes for Water Treatment 409
Qingyi Shao, Guangwen Wang, Cairu Shao, Juan Zhang and Shejun Hu
14.1 Introduction 410
14.2 Calculation Method 414
14.3 Calculation Results and Discussions 416
14.4 Conclusions 428
References 430
15 Multifunctional Silver, Copper and Zero Valent Iron Metallic Nanoparticles for Wastewater Treatment 435
S.C.G. Kiruba Daniel, S. Malathi, S. Balasubramanian, M. Sivakumar and T. Anitha Sironmani
15.1 Introduction 436
15.2 Metal Nanoparticles and Microbial Inactivation 437
15.3 Metal Nanoparticles for Heavy Metal and Dye Removal 441
15.4 Multifunctional Hybrid Nanoparticles – Ag, Cu and ZVI 443
15.5 Mechanism of Action 445
15.6 Concluding Remarks and Future Trends 448
Acknowledgement 448
References 448
16 Iron Oxide Materials for Photo-Fenton Conversion of Water Pollutants 459
S.A.C. Carabineiro, A.M.T. Silva, C.G. Silva, R.A. Segundo, P.B. Tavares, N. Bogdanchikova, J.L. Figueiredo and J.L. Faria
16.1 Introduction 460
16.2 Experimental 461
16.3 Results and Discussion 463
16.4 Conclusions 471
Acknowledgments 472
References 472
17 Nanomaterials with Uniform Composition in Wastewater Treatment and Their Applications 475
Farheen Khan and Rizwan Wahab
17.1 Introduction 476
17.2 Experimental 488
17.3 Effects of Pollutants on Health and the Environment 490
17.4 Summary and Future Directions 499
References 500
Index 513
Erscheint lt. Verlag | 8.8.2014 |
---|---|
Sprache | englisch |
Maße | 163 x 244 mm |
Gewicht | 885 g |
Themenwelt | Naturwissenschaften ► Chemie ► Organische Chemie |
Naturwissenschaften ► Geowissenschaften ► Hydrologie / Ozeanografie | |
Technik ► Maschinenbau | |
ISBN-10 | 1-118-49630-2 / 1118496302 |
ISBN-13 | 978-1-118-49630-5 / 9781118496305 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich