Graphs Theory and Applications (eBook)

With Exercises and Problems
eBook Download: EPUB
2013 | 1. Auflage
284 Seiten
John Wiley & Sons (Verlag)
978-1-118-62309-1 (ISBN)

Lese- und Medienproben

Graphs Theory and Applications - Jean-Claude Fournier
Systemvoraussetzungen
139,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book provides a comprehensive and pedagogical introduction to graph theory and its applications. It contains all the standard basic material and develops significant topics and applications, such as: colorings and the timetabling problem, matchings and the optimal assignment problem, and Hamiltonian cycles and the travelling salesman problem, to name but a few. Exercises at various levels are given at the end of each chapter, and a final chapter presents a few general problems with hints for solutions, thus providing the reader with the opportunity to test and refine their knowledge on the subject. An appendix outlines the basis of computational complexity theory, in particular the definition of NP-completeness, which is essential for algorithmic applications.

Jean-Claude Fournier is Professor at the University of Paris 12, France, and is a member of the Unite Mixte de Recherche Combinatoire et Optimisation (University of Paris 6 and CNRS) founded by Claude Berge.

Introduction 17

Chapter 1. Basic Concepts 21

1.1 The origin of the graph concept 21

1.2 Definition of graphs 24

1.3 Subgraphs 28

1.4 Paths and cycles 29

1.5 Degrees 33

1.6 Connectedness 35

1.7 Bipartite graphs 36

1.8 Algorithmic aspects 37

1.9 Exercises 41

Chapter 2. Trees 45

2.1 Definitions and properties 45

2.2 Spanning trees 49

2.3 Application: minimum spanning tree problem 54

2.4 Connectivity 59

2.5 Exercises 66

Chapter 3. Colorings 71

3.1 Coloring problems 71

3.2 Edge coloring 71

3.3 Algorithmic aspects 73

3.4 The timetabling problem 75

3.5 Exercises 81

Chapter 4. Directed Graphs 83

4.1 Definitions and basic concepts 83

4.2 Acyclic digraphs 90

4.3 Arborescences 92

4.4 Exercises 95

Chapter 5. Search Algorithms 97

5.1 Depth-first search of an arborescence 97

5.2 Optimization of a sequence of decisions 103

5.3 Depth-first search of a digraph 109

5.4 Exercises 117

Chapter 6. Optimal Paths 119

6.1 Distances and shortest paths problems 119

6.2 Case of non-weighted digraphs: breadth-first search 120

6.3 Digraphs without circuits 125

6.4 Application to scheduling 128

6.5 Positive lengths 134

6.6 Other cases 142

6.7 Exercises 143

Chapter 7. Matchings 149

7.1 Matchings and alternating paths 149

7.2 Matchings in bipartite graphs 152

7.3 Assignment problem 156

7.4 Optimal assignment problem 164

7.5 Exercises 171

Chapter 8. Flows 173

8.1 Flows in transportation networks 173

8.2 The max-flow min-cut theorem 177

8.3 Maximum flow algorithm 180

8.4 Flow with stocks and demands 188

8.5 Revisiting theorems 191

8.6 Exercises 194

Chapter 9. Euler Tours 197

9.1 Euler trails and tours 197

9.2 Algorithms 201

9.3 The Chinese postman problem 207

9.4 Exercises 212

Chapter 10. Hamilton Cycles 215

10.1 Hamilton cycles 215

10.2 The traveling salesman problem 218

10.3 Approximation of a difficult problem 220

10.4 Approximation of themetric TSP 223

10.5 Exercises 234

Chapter 11. Planar Representations 237

11.1 Planar graphs 237

11.2 Other graph representations 242

11.3 Exercises 244

Chapter 12. Problems with Comments 247

12.1 Problem 1: A proof of k-connectivity 247

12.2 Problem2: An application to compiler theory 249

12.3 Problem3: Kernel of a digraph 251

12.4 Problem 4: Perfect matching in a regular bipartite graph
253

12.5 Problem5: Birkhoff-Von Neumann's theorem 254

12.6 Problem 6: Matchings and tilings 256

12.7 Problem7: Strip mining 258

Appendix A. Expression of Algorithms 261

Appendix B. Bases of Complexity Theory 267

Bibliography 277

Index 279

Erscheint lt. Verlag 6.5.2013
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Graphentheorie
Technik
Schlagworte Discrete Mathematics • Diskrete Mathematik • Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • Mathematical Modeling • Mathematics • Mathematik • Mathematische Modellierung • Numerical Methods & Algorithms • Numerische Methoden u. Algorithmen
ISBN-10 1-118-62309-6 / 1118623096
ISBN-13 978-1-118-62309-1 / 9781118623091
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 2,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Eiichi Bannai; Etsuko Bannai; Tatsuro Ito; Rie Tanaka

eBook Download (2021)
Walter de Gruyter GmbH & Co.KG (Verlag)
149,95