Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems (eBook)

eBook Download: PDF
2012 | 2013
XVI, 316 Seiten
Springer Berlin (Verlag)
978-3-642-32229-7 (ISBN)

Lese- und Medienproben

Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems - Zhizheng Wu, Azhar Iqbal, Foued Ben Amara
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems presents a novel design of wavefront correctors based on magnetic fluid deformable mirrors (MFDM) as well as corresponding control algorithms. The presented wavefront correctors are characterized by their linear, dynamic response. Various mirror surface shape control algorithms are presented along with experimental evaluations of the performance of the resulting adaptive optics systems. Adaptive optics (AO) systems are used in various fields of application to enhance the performance of optical systems, such as imaging, laser, free space optical communication systems, etc.
This book is intended for undergraduate and graduate students, professors, engineers, scientists and researchers working on the design of adaptive optics systems and their various emerging fields of application.
Zhizheng Wu is an associate professor at Shanghai University, China. Azhar Iqbal is a research associate at the University of Toronto, Canada. Foued Ben Amara is an assistant professor at the University of Toronto, Canada.


Zhizheng Wu received the B.S. and M.S. degrees in electrical and electronic engineering from Hunan University, China, in 1993 and 1995, respectively, the Ph.D. degree in electronic and information engineering from Shanghai Jiaotong University, China, in 1998, and the Ph.D.degree in mechanical engineering from the University of Toronto, Canada, in 2008. From 1999 to 2004, he was respectively with Innomedia Inc., Shanghai; Hongkou Information Committee of Shanghai Government; and Omron Dualtec Automotive Electronics Inc., Toronto. From 2004 to 2009, he was a Research Associate in the Department of Mechanical and Industrial Engineering, University of Toronto. Since January 2010, he has been an associate professor in the Department of Precision Mechanical Engineering, Shanghai University, China. His current research interests include nonlinear/adaptive/hybrid control systems, adaptive optics systems, optomechatronic systems, and robotics.
Azhar Iqbal received the B.E. degree in aeronautical engineering from the National University of Sciences and Technology, Pakistan, in 1993, and the M.A.Sc. degree in aerospace studies and the Ph.D. degree in mechanical engineering from the University of Toronto, Canada, in 2005 and 2009, respectively. He is currently a Research Associate in the Department of Mechanical and Industrial Engineering, University of Toronto. His research interests include adaptive optics, retinal imaging systems, mechatronic systems, robust control, microelectromechanical systems, and biomedical engineering. Dr. Iqbal was a recipient of the 2009 Koh Young Best Paper Award from the International Journal of Optomechatronics.
Foued Ben Amara received the B.S. degree in mechanical engineering from the University of Wisconsin, Madison, the M.S.E. degree in mechanical engineering, the M.S.E. degree in
electrical engineering, and the Ph.D. degree in mechanical engineering from the University of Michigan, Ann Arbor. Prior to joining the University of Toronto, as an Assistant Professor in the Department of Mechanical and Industrial Engineering, he was with the National Research Council Canada - Innovation Centre, and then with UB Video, Inc., Vancouver, BC. His
research interests include nonlinear and adaptive control of dynamic systems with applications in the areas of microsystems and biomedical engineering. Dr. Ben Amara was a recipient of the 2009 Koh Young Best Paper Award from the International Journal of Optomechatronics.

Zhizheng Wu received the B.S. and M.S. degrees in electrical and electronic engineering from Hunan University, China, in 1993 and 1995, respectively, the Ph.D. degree in electronic and information engineering from Shanghai Jiaotong University, China, in 1998, and the Ph.D.degree in mechanical engineering from the University of Toronto, Canada, in 2008. From 1999 to 2004, he was respectively with Innomedia Inc., Shanghai; Hongkou Information Committee of Shanghai Government; and Omron Dualtec Automotive Electronics Inc., Toronto. From 2004 to 2009, he was a Research Associate in the Department of Mechanical and Industrial Engineering, University of Toronto. Since January 2010, he has been an associate professor in the Department of Precision Mechanical Engineering, Shanghai University, China. His current research interests include nonlinear/adaptive/hybrid control systems, adaptive optics systems, optomechatronic systems, and robotics. Azhar Iqbal received the B.E. degree in aeronautical engineering from the National University of Sciences and Technology, Pakistan, in 1993, and the M.A.Sc. degree in aerospace studies and the Ph.D. degree in mechanical engineering from the University of Toronto, Canada, in 2005 and 2009, respectively. He is currently a Research Associate in the Department of Mechanical and Industrial Engineering, University of Toronto. His research interests include adaptive optics, retinal imaging systems, mechatronic systems, robust control, microelectromechanical systems, and biomedical engineering. Dr. Iqbal was a recipient of the 2009 Koh Young Best Paper Award from the International Journal of Optomechatronics. Foued Ben Amara received the B.S. degree in mechanical engineering from the University of Wisconsin, Madison, the M.S.E. degree in mechanical engineering, the M.S.E. degree in electrical engineering, and the Ph.D. degree in mechanical engineering from the University of Michigan, Ann Arbor. Prior to joining the University of Toronto, as an Assistant Professor in the Department of Mechanical and Industrial Engineering, he was with the National Research Council Canada — Innovation Centre, and then with UB Video, Inc., Vancouver, BC. His research interests include nonlinear and adaptive control of dynamic systems with applications in the areas of microsystems and biomedical engineering. Dr. Ben Amara was a recipient of the 2009 Koh Young Best Paper Award from the International Journal of Optomechatronics.

Adaptive Optics Systems.- Magnetic Fluid Deformable Mirrors.- Analytical Model of a Magnetic Fluid Deformable Mirror.- Design of a Magnetic Fluid Deformable Mirror and Experimental Model Validation.- Control System Design.- Decentralized PID Controller Design.- Centralized Optimal Controller Design.

Erscheint lt. Verlag 22.10.2012
Zusatzinfo XVI, 316 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Technik Maschinenbau
Schlagworte Adaptive optics • Advanced Control Algorithms • Magnetic Fluid Deformable Mirrors • Novel Wavefront Correctors • Optomechatronic Systems • Shape Control
ISBN-10 3-642-32229-8 / 3642322298
ISBN-13 978-3-642-32229-7 / 9783642322297
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Funktion, Gestaltung und Berechnung

von Karl-Heinz Decker; Karlheinz Kabus

eBook Download (2023)
Carl Hanser Fachbuchverlag
39,99