A Multiple-Testing Approach to the Multivariate Behrens-Fisher Problem (eBook)

with Simulations and Examples in SAS®

(Autor)

eBook Download: PDF
2013 | 2013
V, 55 Seiten
Springer New York (Verlag)
978-1-4614-6443-3 (ISBN)

Lese- und Medienproben

A Multiple-Testing Approach to the Multivariate Behrens-Fisher Problem - Tejas Desai
Systemvoraussetzungen
39,58 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
​​ ​    In statistics, the Behrens-Fisher problem is the problem of interval estimation and hypothesis testing concerning the difference between the means of two normally distributed populations when the variances of the two populations are not assumed to be equal, based on two independent samples. In his 1935 paper, Fisher outlined an  approach to the Behrens-Fisher problem.  Since high-speed computers were not available in Fisher's time, this approach was not implementable and was soon forgotten. Fortunately, now that high-speed computers are available, this approach can easily be implemented using just a desktop or a laptop computer. Furthermore, Fisher's approach was proposed for univariate samples. But this approach can also be generalized to the multivariate case.      In this monograph, we present the solution to the afore-mentioned multivariate generalization of the Behrens-Fisher problem.  We start out by presenting  a test of multivariate normality, proceed to test(s) of equality of covariance matrices, and end with our solution to the multivariate Behrens-Fisher problem. All methods proposed in this monograph will be include both the randomly-incomplete-data case as well as the complete-data case. Moreover, all methods considered in this monograph will be tested using both simulations and examples. ​

Tejas A. Desai is Assistant Professor at The Adani Institute of Infrastructure Management
In statistics, the Behrens-Fisher problem is the problem of interval estimation and hypothesis testing concerning the difference between the means of two normally distributed populations when the variances of the two populations are not assumed to be equal, based on two independent samples.In his 1935 paper, Fisher outlined an approach to the Behrens-Fisher problem. Since high-speed computers were not available in Fisher's time, this approach was not implementable and was soon forgotten. Fortunately, now that high-speed computers are available, this approach can easily be implemented using just a desktop or a laptop computer. Furthermore, Fisher's approach was proposed for univariate samples. But this approach can also be generalized to the multivariate case. In this monograph, we present the solution to the afore-mentioned multivariate generalization of the Behrens-Fisher problem. We start out by presenting a test of multivariate normality, proceed to test(s) of equality of covariance matrices, and end with our solution to the multivariate Behrens-Fisher problem. All methods proposed in this monograph will be include both the randomly-incomplete-data case as well as the complete-data case. Moreover, all methods considered in this monograph will be tested using both simulations and examples.

Tejas A. Desai is Assistant Professor at The Adani Institute of Infrastructure Management

Introduction.- On Testing for Multivariate Normality.- On Testing Equality of Covariance Matrices.- On Heteroscedastic MANOVA.- References.

Erscheint lt. Verlag 26.2.2013
Reihe/Serie SpringerBriefs in Statistics
SpringerBriefs in Statistics
Zusatzinfo V, 55 p.
Verlagsort New York
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte covariance matrices • Fisher-Behrens Problem • multiple-testing • multivariate analysis • SAS • Simulation
ISBN-10 1-4614-6443-9 / 1461464439
ISBN-13 978-1-4614-6443-3 / 9781461464433
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 348 KB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich