Food Packaging -

Food Packaging (eBook)

Takashi Kadoya (Herausgeber)

eBook Download: PDF | EPUB
2012 | 1. Auflage
452 Seiten
Elsevier Science (Verlag)
978-0-08-092395-6 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
70,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book describes the basic principles of food packaging, as well as recent advances in new materials. The Japanese are world leaders in this area, and detailed information on certain aspects of their industry are presented in this volume. - Sanitation and waste of food packaging materials - Food packaging and energy in Japan - New trends in the technology of food preservation - Fresh and processed food packaging
This book describes the basic principles of food packaging, as well as recent advances in new materials. The Japanese are world leaders in this area, and detailed information on certain aspects of their industry are presented in this volume. - Sanitation and waste of food packaging materials- Food packaging and energy in Japan- New trends in the technology of food preservation- Fresh and processed food packaging

Front Cover 1
Food Packaging 4
Copyright Page 5
Table of Contents 6
Foreword 12
Preface 14
Part I: Fundamentals of Foods 18
Chapter 1. Physical Properties and Microbiology of Foods 20
I. Physical Properties of Foods 20
II. Microbiology of Foods 31
References 39
Chapter 2. Oxidation of Foods 42
I. Oxidation of Lipids 42
II. Secondary Products 51
III. Factors Affecting Lipid Oxidation 52
IV. Antioxidant and Singlet Oxygen Quenchers 57
V. Reactions between Lipid-Oxidized Products and Other Food Components 58
References 59
Part II: New Food Packaging Materials 62
Chapter 3. New Food Packaging Materials: An Introduction 64
Text 64
References 68
Chapter 4. Paper and Paperboard Containers 70
I. Characteristics 70
II. Materials 71
III. Classification of Paper and Paperboard Containers 75
IV. Manufacturing Processes for Cartons 91
References 100
Chapter 5. Metal Containers 102
I. Introduction 102
II. Features of Metal Containers 102
III. Metals 103
IV. Metal Containers and Easy-Open Ends 110
References 121
Chapter 6. Glass Containers 122
I. Introduction 122
II. Forming Glass Bottles 122
III. Properties of Glass Bottles 124
IV. Trends in Glass Bottles 125
V. Afterword 132
References 132
Chapter 7. Plastic Containers 134
I. Introduction 134
II. Polystyrene 135
III. Butadiene–Styrene Copolymer 139
IV. Acrylonitrile–Styrene Copolymer 141
V. Acrylonitrile–Butadiene–Sytrene Copolymer (ABS) 142
VI. Polyvinyl Chloride (PVC) 142
VII. Polyethylene 146
VIII. Polypropylene 150
IX. Nylon 154
X. Saponified Ethylene–Vinyl Acetate Copolymer (EVOH) 157
XI. Polycarbonate 158
XII. Polyethylene Terephthalate 159
Part III: Food Packaging and Energy 164
Chapter 8. Food Packaging and Energy in Japan—Energy Analysis of Consumer Beverage Containers 166
I. Introduction 166
II. Calculation of the Energy of the Transportation for Reference Containers 168
III. Calculation of Manufacturing Energy of Basic Packaging Materials 169
IV. Energy to Manufacture the Container 171
V. Total Energy Consumption 171
VI. Conclusion 176
References 178
Part IV: Packaging Systems and Technology of Food Materials 180
Chapter 9. Recent Development of Packaging Machinery in Japan 182
I. Computer-Controlled Packaging Machines 182
II. Computer-Controlled Optimum Accumulating and Packaging System for Multisized Products 186
III. Heat-Sealing Device Using a Heat Pipe 187
IV. Industrial Robots and Unmanned Operation 190
Part V: New Trends in the Technology of Food Preservation 194
Chapter 10. New Trends in the Technology of Food Preservation— An Introduction 196
I. Food Packaging Technology and the Behavior of Microorganisms 196
II. Sterilization and Control of Microorganisms in Packaged Foods 199
Chapter 11. Retortable Packaging 202
I. Introduction 202
II. History of Retortable Packaging in Japan 203
III. Types of Retort Foods 203
IV. Production Systems of Retort Food 205
V. Microorganism Control in Retort Food 221
VI. Standards for Packages 225
VII. Shelf Life of Retort Food 226
VIII. Conclusion 227
References 227
Chapter 12. Aseptic Packaged Foods 230
I. Recent Trends in Aseptic Packaged Foods In Overseas Countries and Japan 231
II. Aseptic Food Packaging Systems 234
III. Manufacturing Methods of Aseptic Packaged Foods 238
IV. Future Trends in Aseptic Packaged Food 244
References 244
Chapter 13. Free Oxygen Scavenging Packaging 246
I. Introduction 246
II. Summary of Oxygen Absorber 247
III. Types of Oxygen Absorber 252
IV. Advances in Related Technology 261
V. New Knowledge in Microbiology 269
Chapter 14. Frozen Food and Oven-Proof Trays 270
I. Oven-Proof Tray Development 270
II. Varieties of Dual-Oven-Proof Trays 271
III. Lidding of Trays 281
IV. Usage of Trays 282
References 284
Chapter 15. Gas-Exhange Packaging 286
I. Gas-Exchange Packaging and Its Aim 286
II. Gases for Usage and Their Properties 287
III. Form and System of Gas-Exhange Packaging 287
IV. Gas-Exchange Packaging and Packaging Materials 289
V. Cases of Gas-Exchange Packaging in Food 289
References 294
Chapter 16. Vacuum Packaging 296
I. Vacuum Packaging Machinery 296
II. Packaging Material 299
References 309
Part VI: Packaging Fresh and Processed Foods 310
Chapter 17. Fruits 312
I. Packaging for Freshness Preservation and Storage 312
II. Shock-Absorbing Packaging 316
References 318
Chapter 18. Vegetables 320
I. Old Concepts Requiring Reexamination 321
II. New Concepts 323
III. Future Trends 324
References 324
Chapter 19. Fresh Meat 326
I. World Meat Production 326
II. Brief Historical Overview 327
III. Wholesale Packaging 330
IV. Retail Packaging 335
References 338
Chapter 20. Meat By-Products 340
I. Simple Wrapping 341
II. Vacuum Packaging 341
III. Double-Sterilization Packaging 342
IV. Boil-and-Steam Cooking Packaging 343
V. Retort Sterilized Packaging 344
VI. Air-Containing Packaging 345
VII. Oxygen-Absorbing Agent Packaging 346
VIII. Aseptic Packaging 346
IX. Packaging of Typical Product Lines 349
X. Summary 350
Chapter 21. Seafood Products 352
I. Fresh Fish 353
II. Frozen Fish 354
III. Dried, Salted, and Other Types of Seafood Products 355
IV. Canned Fish 356
References 357
Chapter 22. Fish Meat By-Products 358
I. Fish Paste Products (Kamaboko) 358
II. Fish Ham and Fish Sausage 361
III. Specially Packaged Kamaboko 365
Chapter 23. Dairy Products 366
I. Yogurt and Fresh Cheese 366
II. Natural Cheese 368
III. Processed Cheese 370
References 372
Chapter 24. Cakes and Snack Foods 374
I. Introduction 374
II. Classification and Required Quality for Packaging of Cakes 375
III. Quality Deterioration of Cakes 375
IV. Moisture-Proof Packaging and Gas Barrier Packaging 381
V. Vacuum Packaging and Gas Substitution Packaging 384
VI. Packaging with Oxygen Absorbent and Packaging with Gas Substitution Agent 388
VII. Packaging with Alcohol-Generating Agent 394
VIII. Future Prospects 395
References 395
Part VII: Physical Distribution and Food Packaging 396
Chapter 25. Physical Distribution of Packaged Foods 398
I. Packaging for Preservation of Foods in the Distribution Process 398
II. Distribution of Packaged Foods and Temperature Environment 408
III. Physical Distribution and Unit Load System 409
IV. Distribution Package Dimensions by Modular Coordination 412
V. Examples of Distribution Package Dimensions Selected by Modular Coordination 422
Index 432

Chapter 2

Oxidation of Food


Setsuro Matsushita1    Research Institute for Food Science,Kyoto University, Kyoto, Japan
1 Present address: Toua University, Shimonoseki, Japan.

When foods have contact with air, food components are oxidized directly or indirectly. The most frequently occurring reaction is lipid oxidation. This results in reduction or destruction of essential fatty acids, formation of off-flavors, formation of brown pigments, and alteration of pigments and flavors. Therefore, control of lipid oxidation reaction is necessary for the preservation of foods. Keeping foods away from oxygen is an ideal procedure. For that purpose, foods are often wrapped with a layer that is impervious to oxygen, and nitrogen gas or a free-oxygen absorber may be enclosed in the package. However, it is difficult to apply such management to all foods, and therefore use of antioxidants cannot be avoided. There are many factors that accelerate lipid oxidation, and a full understanding of those factors may help to find a way to protect food from lipid oxidation.

I OXIDATION OF LIPIDS


There are two pathways of nonenzymatic lipid oxidation: autoxidation and photosensitized oxidation. These are different in mechanism and products.

A Autoxidation


Oxidation occurs in the unsaturated fatty acids contained in lipids. Autoxidation is a reaction that occurs slowly at room temperature. When unsaturated fatty acids come into contact with oxygen, oxidation proceeds slowly at a uniform rate in the first stage. After the oxidation has proceeded to a certain point, the reaction enters the second step, which has an accelerating rate of oxidation. The initial step is called an induction period (Fig. 1). After the induction period, the products work as the catalyst on the reaction, and therefore this reaction is called autocatalytic autoxidation. The reaction is a chain reaction with radicals.

Figure 1 Hydroperoxide development in lipid autoxidation.

Based on the radical theory, the reaction is explained as divided into three stages: initiation, propagation, and termination (Lundberg, 1962):

RH+O2→catalystR•+•OOHRH→catalystR•+•HPropagationR•+O2→ROO•ROO•+RH→ROOH+R•TerminationROO•+ROO•ROO•+R•R•+Anotherradical}→Nonradical??products

A lipid molecule, RH, forms a free radical, R•, in the presence of oxygen and a catalyst; that is, the initiation starts by the action of an external energy source such as heat, light, or high-energy radiation, or by chemical initiating involving metal ions or heme proteins. The mechanisms of the initiation is still not fully understood. In propagation, the free radical, R•, combined with an oxygen molecule, forms a lipid peroxy radical, ROO•. This radical takes a hydrogen atom from another unsaturated fatty acid molecule and forms the hydroperoxide, ROOH. A new free radical is left on the unsaturated fatty acid molecule from which a hydrogen atom was removed. These reactions are repeated and hydroperoxide molecules are accumulated. The self-propagating chain reaction can be stopped by the termination reaction, where two radicals combine to give nonradical products.

The formation mechanism of hydroperoxides is shown more concretely. Elimination of a hydrogen atom occurs from the α-carbon to the double bond of allyl group, and a free radical is formed. In the case of linoleate, the hydrogen atom at the methylene group between two double bonds is easily eliminated (Fig. 2). The radical moves between two double bonds (pentadiene radical), and two positional isomers are formed after binding with oxygen molecules and taking hydrogen atoms from other linoleate molecules. At the same time, the double bond moves to form conjugated double bonds, followed by formation of hydroperoxides as described above. However, some peroxy radicals cyclize in linolenate and arachidonate, and the molecule is subjected to further oxidation. These are shown later as secondary products. At hydroperoxide formation, cis–trans rear-angement occurs at the same time, though most of the double bonds of natural lipids are cis form. The mechanism of formation of monohydroperoxides is schematically shown in Figs. 3 and 4.

Figure 2 Formation of hydroperoxides in autoxidation of linoleate.
Figure 3 Mechanism of linoleate autoxidation. (From Frankel et al., 1977b.)
Figure 4 Mechanism of linolenate autoxidation. (From Frankel et al., 1977c.)

Table I shows the hydroperoxide positional isomers formed by the oxidation of methyl linoleate, methyl linolenate, and methyl arachidonate. In the cases of linolenate (Frankel, 1980) and arachidonate (Yamagata et al., 1983), the amounts of the inner isomers (12- and 13-isomers in the case of linolenate and 8-, 9-, 11-, and 12-isomers in the case of arachidonate) are less than those of the outer isomers (9- and 16-isomers in the case of linolenate and 5- and 15-isomers in the case of arachidonate). This ratio is considered to depend on the cyclization of the inner peroxy radicals (Neff et al., 1981). When antioxidants coexist, hydrogen atoms are given to peroxy radicals from antioxidants before cyclization. Therefore, the ratio of hydroperoxy isomers formed is almost equal for each isomer (Peers et al., 1981; Yamagata et al., 1983). One example, arachidonate, is shown in Fig. 5.

Table I

GC-MS Analysis of Monohydroperoxide Isomers Formed by Autoxidation of Unsaturated Fatty Acidsa

Oleate 461 27 23 23 27 %
Linoleate 1249 50 50
Linolenate 495 31 11 12 46
Arachidonate 26 9 12 13 8 32

a From Frankel et al. (1977a, 1977b, 1977c), Frankel (1980), and Yamagata et al. (1983).

Figure 5 Isomeric compositions of monohydroperoxides on autoxidation of methyl arachidonate with or without α-tocopherol: (a) without α tocopherol, after 12-h incubation; (B) with α-tocopherol, after 120 h incubation. (From Yamagata et al., 1983.)

Positional isomerization in which the oxygen atoms of the hydroperoxy groups exchange with atomospheric oxygen occurs in methyl linoleate monohydroperoxides (Chan, 1978). The reaction occurs at over 20 °C and in nonpolar solvents. This isomerization occurs frequently in the case of linoleate hydroperoxides but occurs less often in the case of linolenate due to competing with the reaction of cyclization (Terao et al., 1984). Stereoisomerization, the rearangement of a cis–trans form to a trans-trans form, also happens at the same time as positional isomerization (Fig. 6) (Chan et al., 1979; Porter et al., 1980; Porter and Wujek, 1984). The structures of linoleate monohydroperoxide isomers are shown in Fig. 7.

Figure 6 Formation of cis.trans- and trans, trans-hydroperoxides in the oxidation of methyl linoleate. (From Yamamoto et al., 1982.)
Figure 7 Structures of monohydroperoxides of methyl linoleate.

B Photosensitized Oxidation


When a mixture of unsaturated fatty acids and a photosensitizer is irradiated, unconjugated hydroperoxides are formed in addition to the same conjugated hydroperoxides that are produced by autoxidation (Rawls and Van Santen, 1970). This reaction depends on singlet oxygen, 1O2 (type I). Singlet oxygen reacts directly with double bonds electrophilically by addition at either end of the double bond (Foote et al., 1965). That is, the number of hydroperoxide isomers formed is twice the number of the double bonds (Fig. 8 and Table II) (Terao and Matsushita, 1977; Frankel et al., 1979; Porter et al., 1979; Chan and Levette, 1979; Thomas and Pryor, 1980). Singlet oxygen reacts 1500 times faster with methyl linoleate than does triplet oxygen (Rawls and van Santen, 1970). Using S to depict the sensitizer and an asterisk for the excited state, we have:

1S+hv→1S*⇝3S*3S*+3O2→1O2*+1S1O2*+RH→ROOH

Figure 8 Mechanism of linoleate photosensitized oxidation.

Table II

GC-MS Analysis of Monohydroperoxide Isomers...

Erscheint lt. Verlag 2.12.2012
Sprache englisch
Themenwelt Naturwissenschaften Biologie
Naturwissenschaften Physik / Astronomie Angewandte Physik
Technik Lebensmitteltechnologie
ISBN-10 0-08-092395-X / 008092395X
ISBN-13 978-0-08-092395-6 / 9780080923956
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 52,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 12,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Sam Treiman

eBook Download (2024)
Princeton University Press (Verlag)
23,99