Basics of Interferometry -  P. Hariharan

Basics of Interferometry (eBook)

(Autor)

eBook Download: PDF | EPUB
2012 | 1. Auflage
213 Seiten
Elsevier Science (Verlag)
978-0-08-091861-7 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
54,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book is for those who have some knowledge of optics, but little or no previous experience in interferometry. Accordingly, the carefully designed presentation helps readers easily find and assimilate the interferometric techniques they need for precision measurements. Mathematics is held to a minimum, and the topics covered are also summarized in capsule overviews at the beginning and end of each chapter. Each chapter also contains a set of worked problems that give a feel for numbers.
The first five chapters present a clear tutorial review of fundamentals. Chapters six and seven discuss the types of lasers and photodetectors used in interferometry. The next eight chapters describe key applications of interferometry: measurements of length, optical testing, studies of refractive index fields, interference microscopy, holographic and speckle interferometry, interferometric sensors, interference spectroscopy, and Fourier-transform spectroscopy. The final chapter offers suggestions on choosing and setting up an interferometer.
This book is for those who have some knowledge of optics, but little or no previous experience in interferometry. Accordingly, the carefully designed presentation helps readers easily find and assimilate the interferometric techniques they need for precision measurements. Mathematics is held to a minimum, and the topics covered are also summarized in capsule overviews at the beginning and end of each chapter. Each chapter also contains a set of worked problems that give a feel for numbers.The first five chapters present a clear tutorial review of fundamentals. Chapters six and seven discuss the types of lasers and photodetectors used in interferometry. The next eight chapters describe key applications of interferometry: measurements of length, optical testing, studies of refractive index fields, interference microscopy, holographic and speckle interferometry, interferometric sensors, interference spectroscopy, and Fourier-transform spectroscopy. The final chapter offers suggestions on choosing and setting up an interferometer.

Chapter 2

Interference: A Primer


Publisher Summary


This chapter discusses light waves. Light can be thought of as a transverse electromagnetic wave propagating through space. As the electric and magnetic fields are linked to each other and propagate together, it is usually sufficient to consider only the electric field at any point; this field can be treated as a time-varying vector perpendicular to the direction of propagation of the wave. If the field vector always lies in the same plane, the light wave is said to be linearly polarized in that plane. The chapter describes intensity in an interference pattern. When two light waves are superposed, the resultant intensity at any point depends on whether they reinforce or cancel each other. This is the well-known phenomenon of interference. This chapter discusses the localization of fringes. When an extended quasi-monochromatic source, such as a mercury vapor lamp with a monochromatic filter, is used instead of a monochromatic point source, interference fringes are often observed with good contrast only in a particular region. This phenomenon is known as the localization of fringes and is related to the lack of coherence of illumination.

This chapter discusses some basic concepts.

• Light waves

• Intensity in an interference pattern

• Visibility of interference fringes

• Interference with a point source

• Localization of interference fringes

2.1 Light Waves


Light can be thought of as a transverse electromagnetic wave propagating through space. Because the electric and magnetic fields are linked to each other and propagate together, it is usually sufficient to consider only the electric field at any point; this field can be treated as a time-varying vector perpendicular to the direction of propagation of the wave. If the field vector always lies in the same plane, the light wave is said to be linearly polarized in that plane. We can then describe the electric field at any point due to a light wave propagating in a vacuum along the z direction by the scalar equation

(2.1)

where a is the amplitude of the light wave, v is its frequency, and λ is its wavelength. Visible light comprises wavelengths from 0.4 μm (violet) to 0.75 μm (red), corresponding to frequencies of around 7.5 × 1014 Hz and 4.0 × 1014 Hz, respectively. Shorter wavelengths lie in the ultra violet (UV) region, while longer wavelengths lie in the infrared (IR) region.

The term within the square brackets, called the phase of the wave, varies with time as well as with the distance along the z axis from the origin. With the passage of time, any surface of constant phase (a wavefront) specified by Eq. 2.1 moves along the z axis with a speed

(2.2)

(approximately 3 × 108 metres per second in a vacuum). In a medium with a refractive index n, the speed of a light wave is

(2.3)

and, since its frequency remains unchanged, its wavelength is

(2.4)

If a light wave traverses a distance d in such a medium, the equivalent optical path is

(2.5)

Equation 2.1 can also be written in the compact form

(2.6)

where ω =v is the circular frequency, and k = 2π/λ is the propagation constant.

Equation 2.6 is a description of a plane wave propagating through space. However, with a point source of light radiating uniformly in all directions a wavefront would be an expanding spherical shell. This leads us to the concept of a spherical wave which can be described by the equation

(2.7)

At a very large distance from the source, such a spherical wave can obviously be approximated over a limited area by a plane wave.

While the representation of a light wave in terms of a cosine function that we have used so far is easy to visualize, it is not well adapted to mathematical manipulation. It is often more convenient to use a complex exponential representation and write Eq. 2.6 in the form (see Appendix A)

(2.8)

where φ = 2πz/λ, and A = a exp(−) is known as the complex amplitude.

2.2 Intensity in an Interference Pattern


When two light waves are superposed, the resultant intensity at any point depends on whether they reinforce or cancel each other. This is the well-known phenomenon of interference. We will assume that the two waves are propagating in the same direction and are polarized with their field vectors in the same plane. We will also assume that they have the same frequency.

The complex amplitude at any point in the interference pattern is then the sum of the complex amplitudes of the two waves, so that we can write

(2.9)

where A1 = a1 exp(−1) and A2 = a2 exp(−2) are the complex amplitudes of the two waves. The resultant intensity is, therefore,

(2.10)

where I1 and I2 are the intensities due to the two waves acting separately, and Δφ = φ1 − φ2 is the phase difference between them.

If the two waves are derived from a common source, so that they have the same phase at the origin, the phase difference Δφ corresponds to an optical path difference

(2.11)

or a time delay

(2.12)

The order of interference is

(2.13)

If Δφ, the phase difference between the beams, varies linearly across the field of view, the intensity varies cosinusoidally, giving rise to alternating light and dark bands or fringes. These interference fringes correspond to loci of constant phase difference (or, in other words, constant optical path difference).

2.3 Visibility of Interference Fringes


The intensity in an interference pattern has its maximum value

(2.14)

when Δφ = 2mπ, or Δp = mλ, where m is an integer, and its minimum value

(2.15)

when Δφ = (2m + 1)π, Δp = (2m + 1)λ/2.

The visibility V of the interference fringes is then defined by the relation

(2.16)

where 0 ≤ v ≤ 1. In the present case, from Eqs. 2.14 and 2.15,

(2.17)

2.4 Interference with a Point Source


Consider, as shown in Fig. 2.1, a transparent plate illuminated by a point source of monochromatic light such as a laser beam brought to a focus. Interference takes place between the waves reflected from the front and back surfaces of the plate. These waves can be visualized as coming from the virtual sources S1 and S2, which are mirror images of the original source S. Interference fringes are seen on a screen placed anywhere in the region in which the reflected waves overlap.

Figure 2.1 Interference with a monochromatic point source. Formation of fringes by the beams reflected from the two faces of a transparent plate.

With a plane-parallel plate (thickness d, refractive index n), a ray incident at an angle θ1, as shown in Fig. 2.2, gives rise to two parallel rays. The optical path difference between these two rays is

Figure 2.2 Interference with a monochromatic point source and a plane-parallel plate.

(2.18)

(note the additional optical path difference of λ/2 introduced by reflection at one surface; see Appendix B). Since the optical path difference depends only on the angle of incidence θ1, the interference fringes are, as shown in Fig. 2.3(a), circles centered on the normal to the plate (fringes of equal inclination, or Haidinger fringes).

Figure 2.3 (a) Fringes of equal inclination, and (b) fringes of equal thickness.

With a wedged plate and a collimated beam, the angles θ1 and θ2 are constant over the whole field, and the interference fringes are, as shown in Fig. 2.3(b), contours of equal thickness (Fizeau fringes).

2.5 Localization of Fringes


When an extended quasi-monochromatic source (such as a mercury vapor lamp with a monochromatic filter) is used instead of a monochromatic point source, interference fringes are often observed with good contrast only in a particular region. This phenomenon is known as localization of the fringes and is related to the lack of coherence of the illumination.

We will...

Erscheint lt. Verlag 2.12.2012
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Optik
Technik
ISBN-10 0-08-091861-1 / 0080918611
ISBN-13 978-0-08-091861-7 / 9780080918617
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 17,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 5,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Bahaa E. A. Saleh; Malvin Carl Teich

eBook Download (2020)
Wiley-VCH (Verlag)
84,99