Totally Nonnegative Matrices (eBook)

eBook Download: EPUB
2011
264 Seiten
Princeton University Press (Verlag)
978-1-4008-3901-8 (ISBN)

Lese- und Medienproben

Totally Nonnegative Matrices -  Shaun M. Fallat,  Charles R. Johnson
Systemvoraussetzungen
57,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Totally nonnegative matrices arise in a remarkable variety of mathematical applications. This book is a comprehensive and self-contained study of the essential theory of totally nonnegative matrices, defined by the nonnegativity of all subdeterminants. It explores methodological background, historical highlights of key ideas, and specialized topics.The book uses classical and ad hoc tools, but a unifying theme is the elementary bidiagonal factorization, which has emerged as the single most important tool for this particular class of matrices. Recent work has shown that bidiagonal factorizations may be viewed in a succinct combinatorial way, leading to many deep insights. Despite slow development, bidiagonal factorizations, along with determinants, now provide the dominant methodology for understanding total nonnegativity. The remainder of the book treats important topics, such as recognition of totally nonnegative or totally positive matrices, variation diminution, spectral properties, determinantal inequalities, Hadamard products, and completion problems associated with totally nonnegative or totally positive matrices. The book also contains sample applications, an up-to-date bibliography, a glossary of all symbols used, an index, and related references.

Shaun M. Fallat is professor of mathematics and statistics at the University of Regina. Charles R. Johnson is the Class of 1961 Professor of Mathematics at the College of William & Mary.

Erscheint lt. Verlag 11.4.2011
Reihe/Serie Princeton Series in Applied Mathematics
Princeton Series in Applied Mathematics
Zusatzinfo 21 b/w illus. 3 tables.
Verlagsort Princeton
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Angewandte Mathematik
Technik
Schlagworte Addition • Adjugate matrix • algorithm • Analysis • Applied mathematics • Approximation • bidiagonal factorization • Bidiagonal matrix • Big O notation • Calculation • Cardinality • Cauchy–Binet formula • Cauchy matrix • Cayley transform • Characteristic Polynomial • Characterization (mathematics) • chordal graph • coefficient • Coefficient matrix • collocation • combinatorics • Complement (set theory) • completions • complex number • Computation • Constructions • Contradiction • convex hull • convex set • core matrix theory • cornelis • corollary • critical exponent • Cumulative distribution function • Descartes' rule of signs • detection • detemrinants • Determinant • determinantal identities • determinantal inequalities • diagonal • Diagonally dominant matrix • Diagonal matrix • diagram • Diagram (category theory) • directed graph • direct sum • direct summation • Dynamical system • EB factorization • eigenvalues • Eigenvalues and Eigenvectors • Eigenvectors • Elementary diagram • elementary linear algebra • empty set • Equation • existential quantification • exponential distribution • Extensions • Factorization • failure rate • Gamma distribution • geometric design • Glossary • Graph (discrete mathematics) • Hadamard core • Hadamard multiplication • Hadamard powers • Hadamard product (matrices) • Hadamard products • Hadamard's inequality • Hankel matrix • Hermitian matrix • humility • Identity matrix • IITN matrices • Inequality (mathematics) • Ingrid Daubechies • Initial Value Problem • Integer • Invertible matrix • Jacobi matrices • Jacobi matrix • Jan Karel Lenstra • Laplace expansion • linear algebra • Linear combination • Linear map • linear transformations • line insertion • LU decomposition • LU factorization • Main diagonal • Majorization • Markov Chain • Mathematical Analysis • Mathematical and theoretical biology • Mathematical Induction • Mathematics • Matrix Completion • Matrix Completion Problems • Matrix decomposition • matrix function • matrix theory • Matrix theory (physics) • Minor (linear algebra) • MLBC graphs • M-matrix • Natural number • Nomenclature • Nonnegative Matrix • nonnegativity • Normal distribution • Notation • Null vector • Numerical analysis • Parameter • partial differential equation • partially ordered set • partial TN matrices • Pascal matrix • Permutation • Permutation Matrix • Perron complements • Perron-Frobenius theory • Piecewise • planar diagrams • P-matrix • polynomial • polynomial matrix • Positive-definite matrix • Positive element • positive minors • Positive semidefinite • positive semidefinite matrices • Positivity • powers • principal minors • Probability density function • Publishing • Quantity • rank deficiency • rank deficient submatrices • Rank (linear algebra) • rate function • real number • Recognition • remainder • Reply (TV series) • result • retractions • Roots • Row and column spaces • Sailing • Schur complement • scientific notation • Semialgebraic set • Semigroup • Sign (mathematics) • sign variation diminution • Simultaneous Equations • singular value decomposition • Special case • spectral properties • spectral radius • Spline (mathematics) • Square matrix • square root • Stable polynomial • Statistic • Statistics • stochastic • subdeterminants • subdirect sums • Subset • Summation • Support (mathematics) • Technology • Terminology • Theorem • theory • thermodynamics • TN completions • TN linear transformations • TN matrices • TN matrix • TN matrix structure • TN perturbations • TN polynomial matrices • Toeplitz Matrix • totally nonnegative matrices • totally positive matrices • Totally positive matrix • Total order • Total Positivity • TP intervals • TP matrices • TP matrix • TP polynomial matrices • transpose • triangular factorization • Triangular Matrix • tridiagonal matrix • Unordered pair • Vandermonde matrices • Vandermonde matrix • Variable (mathematics) • variation diminution • Vectors • Without loss of generality • Zero element • Zero of a function
ISBN-10 1-4008-3901-7 / 1400839017
ISBN-13 978-1-4008-3901-8 / 9781400839018
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich