A Course in Time Series Analysis (eBook)
496 Seiten
John Wiley & Sons (Verlag)
978-1-118-03122-3 (ISBN)
A Course in Time Series Analysis demonstrates how to build time series models for univariate and multivariate time series data. It brings together material previously available only in the professional literature and presents a unified view of the most advanced procedures available for time series model building. The authors begin with basic concepts in univariate time series, providing an up-to-date presentation of ARIMA models, including the Kalman filter, outlier analysis, automatic methods for building ARIMA models, and signal extraction. They then move on to advanced topics, focusing on heteroscedastic models, nonlinear time series models, Bayesian time series analysis, nonparametric time series analysis, and neural networks. Multivariate time series coverage includes presentations on vector ARMA models, cointegration, and multivariate linear systems. Special features include:
* Contributions from eleven of the worldâ??s leading figures in time series
* Shared balance between theory and application
* Exercise series sets
* Many real data examples
* Consistent style and clear, common notation in all contributions
* 60 helpful graphs and tables
Requiring no previous knowledge of the subject, A Course in Time Series Analysis is an important reference and a highly useful resource for researchers and practitioners in statistics, economics, business, engineering, and environmental analysis.
An Instructor's Manual presenting detailed solutions to all the problems in he book is available upon request from the Wiley editorial department.
DANIEL PEÑA, PhD, is Professor of Statistics, Universidad Carlos III de Madrid. GEORGE C. TIAO, PhD, is W. Allen Wallis Professor of Statistics and Econometrics, Graduate School of Business, University of Chicago. RUEY S. TSAY, PhD, is H. G. B. Alexander Professor of Statistics and Econometrics, Graduate School of Business, University of Chicago.
Introduction (D. Pe?a & G. Tiao).
BASIC CONCEPTS IN UNIVARIATE TIME SERIES.
Univariate Time Series: Autocorrelation, Linear Prediction,Spectrum, State Space Model (G. Wilson).
Univariate Autoregressive Moving Average Models (G. Tiao).
Model Fitting and Checking, and the Kalman Filter (G.Wilson).
Prediction and Model Selection (D. Pe?a).
Outliers, Influential Observations and Missing Data (D.Pe?a).
Automatic Modeling Methods for Univariate Series (V. Gomez & A.Maravall).
Seasonal Adjustment and Signal Extraction in Economic Time Series(V. Gomez & A. Maravall).
ADVANCED TOPICS IN UNIVARIATE TIME SERIES.
Heteroscedatic Models (R. Tsay).
Nonlinear Time Series Models (R. Tsay).
Bayesian Time Series Analysis (R. Tsay).
Nonparametric Time Series Analysis: Nonparametric Regression,Locally Weighted Regression, Autoregression and Quantile Regression(S. Heiler).
Neural Networks (K. Hornik & F. Leisch).
MULTIVARIATE TIME SERIES.
Vector ARMA Models (G. Tiao).
Cointegration in the VAR Model (S. Johansen).
Multivariate Linear Systems (M. Deistler).
References.
Index.
"This text demonstrate how to build time series models forunivariate and multivariate time series data." (SciTech Book News,Vol. 25, No. 2, June 2001)
"...material is thoroughly and carefully presented...a veryuseful addition to any collection both for learning and reference."(Short Book Reviews, Vol. 21, No. 2, August 2001)
"From the preface: ?The book can be used as a principal text ora complementary text for courses in time series.?" (MathematicalReviews, Issue 2001k)
"...an excellent complement...for a first graduate course intime series analysis...a nice addition to anyone?s time serieslibrary." (Technometrics, Vol. 43, No. 4, November 2001)
"If you are familiar with the basics...and need a compass tonavigate the vast world of time series literature, then this bookis certainly what you need to have around...presents seamlessly andcoherently overviews of the current status of time series researchand applications." (The American Statistician, Vol. 56, No. 1,February 2002)
"...an excellent source of introductory surveys of severaltimely topics in time series analysis..." (Statistical Papers, July2002)
"...a nice compendium covering a lot of relevant material..."(Statistics & Decisions, Vol.20, No.4, 2002)
Erscheint lt. Verlag | 26.1.2011 |
---|---|
Reihe/Serie | Wiley Series in Probability and Statistics | Wiley Series in Probability and Statistics |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik | |
Wirtschaft ► Volkswirtschaftslehre ► Ökonometrie | |
Schlagworte | Statistics • Statistik • Time Series • Zeitreihen |
ISBN-10 | 1-118-03122-9 / 1118031229 |
ISBN-13 | 978-1-118-03122-3 / 9781118031223 |
Haben Sie eine Frage zum Produkt? |
Größe: 20,3 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich