Lebesgue Measure and Integration (eBook)

An Introduction

(Autor)

eBook Download: PDF
2011 | 1. Auflage
312 Seiten
John Wiley & Sons (Verlag)
978-1-118-03098-1 (ISBN)

Lese- und Medienproben

Lebesgue Measure and Integration - Frank Burk
Systemvoraussetzungen
15,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
A superb text on the fundamentals of Lebesgue measure and integration.

This book is designed to give the reader a solid understanding of Lebesgue measure and integration. It focuses on only the most fundamental concepts, namely Lebesgue measure for R and Lebesgue integration for extended real-valued functions on R. Starting with a thorough presentation of the preliminary concepts of undergraduate analysis, this book covers all the important topics, including measure theory, measurable functions, and integration. It offers an abundance of support materials, including helpful illustrations, examples, and problems. To further enhance the learning experience, the author provides a historical context that traces the struggle to define "area" and "area under a curve" that led eventually to Lebesgue measure and integration.

Lebesgue Measure and Integration is the ideal text for an advanced undergraduate analysis course or for a first-year graduate course in mathematics, statistics, probability, and other applied areas. It will also serve well as a supplement to courses in advanced measure theory and integration and as an invaluable reference long after course work has been completed.

FRANK BURK teaches in the Department of Mathematics at California State University.

Preface xi

Chapter 1. Historical Highlights 1

1.1 Rearrangements 2

1.2 Eudoxus (408-355 B.C.E.) and the Method of Exhaustion 3

1.3 The Lune of Hippocrates (430 B.C.E.) 5

1.4 Archimedes (287-212 B.C.E.) 7

1.5 Pierre Fermat (1601-1665)

1.6 Gottfried Leibnitz (1646-1716), Issac Newton (1642-1723) 12

1.7 Augustin-Louis Cauchy (1789-1857) 15

1.8 Bernhard Riemann (1826-1866) 17

1.9 Emile Borel (1871 -1956), Camille Jordan (1838-1922), Giuseppe Peano (1858-1932) 20

1.10 Henri Lebesgue (1875-1941), William Young (1863-1942) 22

1.11 Historical Summary 25

1.12 Why Lebesgue 26

Chapter 2. Preliminaries 32

2.1 Sets 32

2.2 Sequences of Sets 34

2.3 Functions 35

2.4 Real Numbers 42

2.5 Extended Real Numbers 49

2.6 Sequences of Real Numbers 51

2.7 Topological Concepts of R 62

2.8 Continuous Functions 66

2.9 Differentiable Functions 73

2.10 Sequences of Functions 75

Chapter 3. Lebesgue Measure 87

3.1 Length of Intervals 90

3.2 Lebesgue Outer Measure 93

3.3 Lebesgue Measurable Sets 100

3.4 BorelSets 112

3.5 "Measuring" 115

3.6 Structure of Lebesgue Measurable Sets 120

Chapter 4. Lebesgue Measurable Functions 126

4.1 Measurable Functions 126

4.2 Sequences of Measurable Functions 135

4.3 Approximating Measurable Functions 137

4.4 Almost Uniform Convergence 141

Chapter 5. Lebesgue Integration 147

5.1 The Riemann Integral 147

5.2 The Lebesgue Integral for Bounded Functions on Sets of Finite Measure 173

5.3 The Lebesgue Integral for Nonnegative Measurable Functions 194

5.4 The Lebesgue Integral and Lebesgue Integrability 224

5.5 Convergence Theorems 237

Appendix A. Cantor's Set 252

Appendix B. A Lebesgue Nonmeasurable Set 266

Appendix C. Lebesgue, Not Borel 273

Appendix D. A Space-Filling Curve 276

Appendix E. An Everywhere Continuous, Nowhere Differentiable,

Function 279

References 285

Index 288

Erscheint lt. Verlag 14.10.2011
Reihe/Serie Wiley Series in Pure and Applied Mathematics
Wiley Series in Pure and Applied Mathematics
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Technik
Schlagworte Lebesguesches Integral • Mass (Math.) • Mathematical Analysis • Mathematics • Mathematics Special Topics • Mathematik • Mathematik / Analysis • Mathematische Analyse • Spezialthemen Mathematik
ISBN-10 1-118-03098-2 / 1118030982
ISBN-13 978-1-118-03098-1 / 9781118030981
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 9,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich