Modern Applied U-Statistics (eBook)

eBook Download: PDF
2008 | 1. Auflage
400 Seiten
John Wiley & Sons (Verlag)
978-0-470-18645-9 (ISBN)

Lese- und Medienproben

Modern Applied U-Statistics - Jeanne Kowalski, Xin M. Tu
Systemvoraussetzungen
137,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
A timely and applied approach to the newly discovered methods and
applications of U-statistics

Built on years of collaborative research and academic experience,
Modern Applied U-Statistics successfully presents a thorough
introduction to the theory of U-statistics using in-depth examples
and applications that address contemporary areas of study including
biomedical and psychosocial research. Utilizing a "learn by
example" approach, this book provides an accessible, yet in-depth,
treatment of U-statistics, as well as addresses key concepts in
asymptotic theory by integrating translational and
cross-disciplinary research.

The authors begin with an introduction of the essential and
theoretical foundations of U-statistics such as the notion of
convergence in probability and distribution, basic convergence
results, stochastic Os, inference theory, generalized estimating
equations, as well as the definition and asymptotic properties of
U-statistics. With an emphasis on nonparametric applications when
and where applicable, the authors then build upon this established
foundation in order to equip readers with the knowledge needed to
understand the modern-day extensions of U-statistics that are
explored in subsequent chapters. Additional topical coverage
includes:

Longitudinal data modeling with missing data

Parametric and distribution-free mixed-effect and structural
equation models

A new multi-response based regression framework for non-parametric
statistics such as the product moment correlation, Kendall's tau,
and Mann-Whitney-Wilcoxon rank tests

A new class of U-statistic-based estimating equations (UBEE) for
dependent responses

Motivating examples, in-depth illustrations of statistical and
model-building concepts, and an extensive discussion of
longitudinal study designs strengthen the real-world utility and
comprehension of this book. An accompanying Web site features SAS?
and S-Plus? program codes, software applications, and additional
study data. Modern Applied U-Statistics accommodates second- and
third-year students of biostatistics at the graduate level and also
serves as an excellent self-study for practitioners in the fields
of bioinformatics and psychosocial research.

Jeanne Kowalski, PhD, is Assistant Professor in the Division of Oncology Biostatistics at The Johns Hopkins University. Dr. Kowalski has authored or coauthored over thirty journal articles that focus on a wide range of issues in medicine and public health through the use of novel statistical methods, including U-statistics, generalized linear mixed-effects models, generalized estimating equations, asymptotics, and measurement error models. Xin M. Tu, PhD, is Professor in the Department of Biostatistics and Computational Biology as well as the Department of Psychiatry at The University of Rochester in New York. Dr. Tu has authored or coauthored over ninety publications in peer-reviewed journals during his career and is acclaimed as one of the best-versed authorities in the area of U-statistics.

Preface.

1. Preliminaries.

2. Models for Cross-Sectional Data.

3. Univariate U-Statistics.

4. Models for Clustered Data.

5. Multivariate U-Statistics.

6. Functional response Models.

References.

Subject Index.

Erscheint lt. Verlag 14.2.2008
Reihe/Serie Wiley Series in Probability and Statistics
Wiley Series in Probability and Statistics
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte Biostatistics • Biostatistik • Computational & Graphical Statistics • Rechnergestützte u. graphische Statistik • Rechnergestützte u. graphische Statistik • Statistics • Statistik
ISBN-10 0-470-18645-3 / 0470186453
ISBN-13 978-0-470-18645-9 / 9780470186459
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 17,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich