Optical Communications Reference -

Optical Communications Reference (eBook)

eBook Download: PDF | EPUB
2009 | 1. Auflage
473 Seiten
Elsevier Science (Verlag)
978-0-12-375164-5 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
110,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Extracting key information from Academic Press's range of prestigious titles in optical communications, this reference gives the R&D optical fiber communications engineer a quick and easy-to-grasp understanding of the current state of the art in optical communications technology, together with some of the underlying theory, covering a broad of topics: optical waveguides, optical fibers, optical transmitters and receivers, fiber optic data communication, optical networks, and optical theory. With this reference, the engineer will be up-to-speed on the latest developments in no-time.


  • Provides an overview of current state-of-the-art in optical communications technology, enabling the reader to get up to speed with the latest technological developments and establish their value for product development
  • Brings together material from a number of authoritative sources, giving both breadth and depth of content and providing a single source of key knowledge and information which saves time in seeking information from scattered sources
  • Explores latest technologies and their implementation, allowing the engineer to compare and contrast approaches and solutions
  • Provides just enough introductory material for readers to grasp the underpinning physics, giving the engineer an accessible introduction to the underlying theory for a proper understanding

  • Extracting key information from Academic Press's range of prestigious titles in optical communications, this reference gives the R&D optical fiber communications engineer a quick and easy-to-grasp understanding of the current state of the art in optical communications technology, together with some of the underlying theory, covering a broad of topics: optical waveguides, optical fibers, optical transmitters and receivers, fiber optic data communication, optical networks, and optical theory. With this reference, the engineer will be up-to-speed on the latest developments in no-time.Provides an overview of current state-of-the-art in optical communications technology, enabling the reader to get up to speed with the latest technological developments and establish their value for product development Brings together material from a number of authoritative sources, giving both breadth and depth of content and providing a single source of key knowledge and information which saves time in seeking information from scattered sources Explores latest technologies and their implementation, allowing the engineer to compare and contrast approaches and solutions Provides just enough introductory material for readers to grasp the underpinning physics, giving the engineer an accessible introduction to the underlying theory for a proper understanding

    Front Cover 
    1 
    Note from the Publisher 3
    The Optical 
    4 
    Copyright 
    5 
    Contents 6
    Section One 
    8 
    Chapter 1.1 
    10 
    1.1.1 
    10 
    1.1.2 
    14 
    1.1.3 
    18 
    1.1.4 
    20 
    1.1.5 
    21 
    Chapter 1.2 
    30 
    1.2.1 
    30 
    1.2.2 
    40 
    1.2.3 
    43 
    1.2.4 
    46 
    1.2.5 
    47 
    Section Two 
    62 
    Chapter 2.1 
    64 
    2.1.1 
    64 
    2.1.2 
    65 
    2.1.3 
    66 
    2.1.4 
    68 
    References 69
    Chapter 2.2 
    70 
    2.2.1 
    70 
    2.2.2 
    77 
    2.2.3 
    83 
    2.2.4 
    86 
    References 91
    Section Three 
    92 
    Chapter 3.1 
    94 
    3.1.1 
    94 
    3.1.2 
    95 
    3.1.3 
    102 
    3.1.4 
    111 
    3.1.5 
    113 
    3.1.6 
    113 
    3.1.7 
    114 
    Acknowledgments 114
    References 114
    Chapter 3.2 
    118 
    3.2.1 
    118 
    3.2.2 
    118 
    3.2.3 
    119 
    3.2.4 
    121 
    3.2.5 
    122 
    3.2.6 
    127 
    3.2.7 
    128 
    3.2.8 
    129 
    3.2.9 
    129 
    References 130
    Chapter 3.3 
    132 
    3.3.1 
    132 
    3.3.2 
    134 
    3.3.3 
    137 
    3.3.4 
    139 
    3.3.5 
    142 
    3.3.6 
    148 
    3.3.7 
    151 
    3.3.8 
    153 
    Acknowledgments 153
    References 154
    Chapter 3.4 
    160 
    3.4.1 
    160 
    3.4.2 
    161 
    3.4.3 
    167 
    3.4.4 
    168 
    3.4.5 
    169 
    3.4.6 
    170 
    References 170
    Section Four 
    172 
    Chapter 4.1 
    174 
    4.1.1 
    175 
    4.1.2 
    176 
    4.1.3 
    179 
    4.1.4 
    183 
    References 186
    Chapter 4.2 
    188 
    4.2.1 
    189 
    4.2.2 
    191 
    4.2.3 
    193 
    4.2.4 
    195 
    4.2.5 
    203 
    References 206
    Chapter 4.3 
    208 
    4.3.1 
    208 
    4.3.2 
    210 
    4.3.3 
    211 
    References 215
    Section Five 
    218 
    Chapter 5.1 
    220 
    5.1.1 
    220 
    5.1.2 
    221 
    5.1.3 
    223 
    5.1.4 
    227 
    5.1.5 
    229 
    References 233
    Chapter 5.2 
    234 
    5.2.1 
    234 
    5.2.2 
    234 
    5.2.3 
    237 
    5.2.4 
    238 
    5.2.5 
    239 
    5.2.6 
    241 
    5.2.7 
    243 
    5.2.8 
    244 
    References 246
    Chapter 5.3 
    248 
    5.3.1 
    248 
    5.3.2 
    248 
    5.3.3 
    253 
    5.3.4 
    258 
    5.3.5 
    260 
    5.3.6 
    262 
    5.3.7 
    263 
    5.3.8 
    264 
    5.3.9 
    265 
    References 268
    Chapter 5.4 
    270 
    5.4.1 
    270 
    5.4.2 
    273 
    5.4.3 
    288 
    5.4.4 
    300 
    5.4.5 
    306 
    Acknowledgments 
    308 
    References 309
    Section Six 
    312 
    Chapter 6.1 
    314 
    6.1.1 
    314 
    6.1.2 
    315 
    6.1.3 
    316 
    6.1.4 
    319 
    6.1.5 
    320 
    6.1.6 
    324 
    6.1.7 
    333 
    6.1.8 
    340 
    6.1.9 
    342 
    6.1.10 
    343 
    6.1.11 
    348 
    References 350
    Chapter 6.2 
    352 
    6.1.2 
    352 
    6.2.2 
    353 
    6.2.3 
    354 
    6.2.4 
    356 
    6.2.5 
    359 
    6.2.6 
    361 
    6.2.7 
    363 
    6.2.8 
    366 
    Acknowledgments 368
    References 368
    Chapter 6.3 
    370 
    6.3.1 
    370 
    6.3.2 
    370 
    6.3.3 
    373 
    6.3.4 
    374 
    6.3.5 
    383 
    6.3.6 
    385 
    Case study WDM link budget design 
    386 
    REFERENCES 386
    ADDITIONAL REFERENCE MATERIAL: 388
    Chapter 6.4 
    390 
    6.4.1 
    390 
    6.4.2 
    391 
    6.4.3 
    393 
    6.4.4 
    394 
    6.4.5 
    397 
    6.4.6 
    400 
    6.4.7 
    403 
    6.4.8 
    414 
    6.4.9 
    417 
    Acknowledgments 417
    References 417
    Chapter 6.5 
    422 
    6.5.1 
    422 
    6.5.2 
    424 
    6.5.3 
    426 
    6.5.4 
    426 
    6.5.5 
    432 
    6.5.6 Operational savings 434
    Chapter 6.5.7 
    434 
    6.5.8 
    439 
    6.5.9 
    441 
    Acknowledgments 441
    List of Acronyms 441
    References 442
    Chapter 6.6 
    444 
    6.6.1 
    444 
    6.6.2 
    445 
    6.6.3 
    447 
    6.6.4 
    452 
    6.6.5 
    459 
    6.6.6 
    460 
    6.6.7 
    461 
    Acknowledgments 462
    REFERENCES 462
    Index 464
    PHYSICAL CONSTANTS IN SI UNITS 472

    Chapter 1.1

    Geometrical optics


    Menn

    1.1.1 Ray optics conventions and practical rules. Real and virtual objects and images


    Electro-optical systems are intended for the transfer and transformation of radiant energy. They consist of active and passive elements and sub-systems. In active elements, like radiation sources and radiation sensors, conversion of energy takes place (radiant energy is converted into electrical energy and vice versa, chemical energy is converted in radiation and vice versa, etc.). Passive elements (like mirrors, lenses, prisms, etc.) do not convert energy, but affect the spatial distribution of radiation. Passive elements of electro-optical systems are frequently termed optical systems.

    Following this terminology, an optical system itself does not perform any transformation of radiation into other kinds of energy, but is aimed primarily at changing the spatial distribution of radiant energy propagated in space. Sometimes only concentration of radiation somewhere in space is required (like in the systems for medical treatment of tissues or systems for material processing of fabricated parts). In other cases the ability of optics to create light distribution similar in some way to the light intensity profile of an “object” is exploited. Such a procedure is called imaging and the corresponding optical system is addressed as an imaging optical system.

    Of all the passive optical elements (prisms, mirrors, filters, lenses, etc.) lenses are usually our main concern. It is lenses that allow one to concentrate optical energy or to get a specific distribution of light energy at different points in space (in other words, to create an “image”).

    In most cases experienced in practice, imaging systems are based on lenses (exceptions are the imaging systems with curved mirrors).

    The functioning of any optical element, as well as the whole system, can be described either in terms of ray optics or in terms of wave optics. The first case is usually called the geometrical optics approach while the second is called physical optics. In reality there are many situations when we need both (for example, in image quality evaluation, see Chapter 2). But, since each approach has advantages and disadvantages in practical use, it is important to know where and how to exploit each one in order to minimize the complexity of consideration and to avoid wasting time and effort.

    This chapter is related to geometrical optics, or, more specifically, to ray optics. Actually an optical ray is a mathematical simplification: it is a line with no thickness. In reality optical beams which consist of an endless quantity of optical rays are created and transferred by electro-optical systems. Naturally, there exist three kinds of optical beams: parallel, divergent, and convergent (see Fig. 1.1.1). If a beam, either divergent or convergent, has a single point of intersection of all optical rays it is called a homocentric beam (Fig. 1.1.1b,c). An example of a non-homocentric beam is shown in Fig. 1.1.1 d. Such a convergent beam could be the result of different phenomena occurring in optical systems (see Chapter 2 for more details).

    Fig. 1.1.1 Optical beams: (a) parallel, (b,c) homocentric and (d) non-homocentric.

    Ray optics is primarily based on two simple physical laws: the law of reflection and the law of refraction. Both are applicable when a light beam is incident on a surface separating two optical media, with two different indexes of refraction, n1 and n2 (see Fig. 1.1.2). The first law is just a statement that the incident angle, i, is equal to the reflection angle, i′. The second law defines the relation between the incident angle and the angle of refraction, r:

    i/sinr=n2/n1.

      (1.1.1)

    Fig. 1.1.2 Reflection and refraction of radiation.

    It is important to mention that all angles are measured from the vertical line perpendicular to the surface at the point of incidence (so that the normal incidence of light means that i = i′  = r = 0).

    In the geometrical optics approach the following assumptions are conventionally accepted:

    (a) radiation is propagated along a straight line trajectory (this means that diffraction effects are not taken into account);

    (b) if two beams intersect each other in space there is no interaction between them and each one is propagated as if the second one does not appear (this means that interference effects are not taken into account);

    (c) ray tracing is invertable; in other words, if the ray trajectory is found while the ray is propagated through the system from input to output (say, from the left to the right) and then a new ray comes to the same system along the outgoing line of the first ray, but propagates in the reverse direction (from the right to the left), the trajectory of the second ray inside and outside of the system is identical to that of the first ray and it goes out of the system along the incident line of the first ray.

    Normally an optical system is assumed to be axisymmetrical, with the optical axis going along OX in the horizontal direction. Objects and images are usually located in the planes perpendicular to the optical axes, meaning that they are along the OY (vertical) axis. Ray tracing is a procedure of calculating the trajectory of optical rays propagating through the system. Radiation propagates from the left to the right and, consequently, the object space (part of space where the light sources or the objects are located) is to the left of the system. The image space (part of space where the light detectors or images are located) is to the right of the system.

    All relevant values describing optical systems can be positive or negative and obey the following sign conventions and rules:

    ray angles are calculated relative to the optical axis; the angle of a ray is positive if the ray should be rotated counterclockwise in order to coincide with OX, otherwise the angle is negative;

    vertical segments are positive above OX and negative below OX;

    horizontal segments should start from the optical system and end at the relevant point according to the segment definition. If going from the starting point to the end we move left (against propagated radiation), the segment is negative; if we should move right (in the direction of propagated radiation), the corresponding segment is positive.

    Examples are demonstrated in Fig. 1.1.3. The angle u is negative (clockwise rotation of the ray to OX) whereas u′ is positive. The object Y is positive and its image Y′ is negative. The segment S defines the object distance. It starts from the point O (from the system) and ends at the object (at Y). Since we move from O to Y against the light, this segment is negative (S < 0). Accordingly, the segment S′ (distance to the image) starts from the system (point O') and ends at the image Y′. Since in this case we move in the direction of propagated light (from left to right) this segment is positive (S′ > 0).

    Fig. 1.1.3 Sign conventions.

    The procedure of imaging is based on the basic assumption that any object is considered as a collection of separate points, each one being the center of a homocentric divergent beam coming to the optical system. The optical system transfers all these beams, converting each one to a convergent beam concentrated in a small spot (ideally a point) which is considered as an image of the corresponding point of the object. The collection of such “point images” creates an image of the whole object (see Fig. 1.1.4).

    Fig. 1.1.4 Concept of image formation.

    An ideal imaging is a procedure when all homocentric optical beams remain homocentric after traveling through the optical system, up to the image plane (this case is demonstrated in Fig. 1.1.4). Unfortunately, in real imaging the outgoing beams become non-homocentric which, of course, “spoils” the images and makes it impossible to reproduce the finest details of the object (this is like a situation when we try to draw a picture using a pencil which is not sharp enough and makes only thick lines – obviously we fail to draw the small and fine details on the picture). The reasons for such degradation in image quality lie partially in geometrical optics (then they are termed optical aberrations) and partially are due to the principal limitations of wave optics (diffraction limit). We consider this situation in detail in Chapter 1.2. Here we restrict ourselves to the simple case of ideal imaging.

    In performing ray tracing one should be aware that doing it rigorously means going step by step from one optical surface to another and calculating at each step the incident and refraction angles using Eq. (1.1.1). Since many rays should be calculated, it is a time-consuming procedure which today is obviously done with the aid of computers and special programs for optical design. However, analytical consideration remains very difficult (if possible at all). The complexity of the procedure is caused mainly by the...

    Erscheint lt. Verlag 10.11.2009
    Sprache englisch
    Themenwelt Technik Elektrotechnik / Energietechnik
    Technik Nachrichtentechnik
    ISBN-10 0-12-375164-0 / 0123751640
    ISBN-13 978-0-12-375164-5 / 9780123751645
    Haben Sie eine Frage zum Produkt?
    PDFPDF (Adobe DRM)
    Größe: 19,4 MB

    Kopierschutz: Adobe-DRM
    Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
    Details zum Adobe-DRM

    Dateiformat: PDF (Portable Document Format)
    Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

    Systemvoraussetzungen:
    PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
    eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
    Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
    Geräteliste und zusätzliche Hinweise

    Buying eBooks from abroad
    For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

    EPUBEPUB (Adobe DRM)
    Größe: 18,9 MB

    Kopierschutz: Adobe-DRM
    Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
    Details zum Adobe-DRM

    Dateiformat: EPUB (Electronic Publication)
    EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

    Systemvoraussetzungen:
    PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
    eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
    Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
    Geräteliste und zusätzliche Hinweise

    Buying eBooks from abroad
    For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

    Mehr entdecken
    aus dem Bereich
    Ressourcen und Bereitstellung

    von Martin Kaltschmitt; Karl Stampfer

    eBook Download (2023)
    Springer Fachmedien Wiesbaden (Verlag)
    66,99
    Lehrbuch zu Grundlagen, Technologie und Praxis

    von Konrad Mertens

    eBook Download (2022)
    Carl Hanser Verlag GmbH & Co. KG
    34,99