Quantum Chemistry -  John P. Lowe,  Kirk Peterson

Quantum Chemistry (eBook)

eBook Download: PDF | EPUB
2011 | 3. Auflage
728 Seiten
Elsevier Science (Verlag)
978-0-08-047078-8 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
71,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Lowe's new edition assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry. It can serve as a primary text in quantum chemistry courses, and enables students and researchers to comprehend the current literature. This third edition has been thoroughly updated and includes numerous new exercises to facilitate self-study and solutions to selected exercises.
  • Assumes little initial mathematical or physical sophistication, developing insights and abilities in the context of actual problems
  • Provides thorough treatment of the simple systems basic to this subject
  • Emphasizes UNDERSTANDING of the techniques and results of modern quantum chemistry
  • Treats MO theory from simple Huckel through ab intio methods in current use
  • Develops perturbation theory through the topics of orbital interaction as well as spectroscopic selection rules
  • Presents group theory in a context of MO applications
  • Includes qualitative MO theory of molecular structure, Walsh rules, Woodward-Hoffmann rules, frontier orbitals, and organic reactions
  • Develops MO theory of periodic systems, with applications to organic polymers.

Lowe's new edition assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry. It can serve as a primary text in quantum chemistry courses, and enables students and researchers to comprehend the current literature. This third edition has been thoroughly updated and includes numerous new exercises to facilitate self-study and solutions to selected exercises. Assumes little initial mathematical or physical sophistication, developing insights and abilities in the context of actual problems Provides thorough treatment of the simple systems basic to this subject Emphasizes UNDERSTANDING of the techniques and results of modern quantum chemistry Treats MO theory from simple Huckel through ab intio methods in current use Develops perturbation theory through the topics of orbital interaction as well as spectroscopic selection rules Presents group theory in a context of MO applications Includes qualitative MO theory of molecular structure, Walsh rules, Woodward-Hoffmann rules, frontier orbitals, and organic reactions Develops MO theory of periodic systems, with applications to organic polymers.

Chapter 2 Quantum Mechanics of Some Simple Systems

2-1 The Particle in a One-Dimensional “Box”


Imagine that a particle of mass m is free to move along the x axis between x = 0 and x = L, with no change in potential (set V = 0 for 0 <x <L). At x = 0 and L and at all points beyond these limits the particle encounters an infinitely repulsive barrier (V = ∞ for x ≤ 0, xL). The situation is illustrated in Fig. 2-1. Because of the shape of this potential, this problem is often referred to as a particle in a square well or a particle in a box problem. It is well to bear in mind, however, that the situation is really like that of a particle confined to movement along a finite length of wire.

Figure 2-1 The potential felt by a particle as a function of its x coordinate.

When the potential is discontinuous, as it is here, it is convenient to write a wave equation for each region. For the two regions beyond the ends of the box


     (2-1)


Within the box, ψ must satisfy the equation


     (2-2)


It should be realized that E must take on the same values for both of these equations; the eigenvalue E pertains to the entire range of the particle and is not influenced by divisions we make for mathematical convenience.

Let us examine Eq. (2-1) first. Suppose that, at some point within the infinite barrier, say x = L + dx, ψ is finite. Then the second term on the left-hand side of Eq. (2-1) will be infinite. If the first term on the left-hand side is finite or zero, it follows immediately that Eis infinite at the point L + dx (and hence everywhere in the system). Is it possible that a solution exists such that E is finite? One possibility is that ψ = 0 at all points where V = ∞. The other possibility is that the first term on the left-hand side of Eq. (2-1) can be made to cancel the infinite second term. This might happen if the second derivative of the wavefunction is infinite at all points where V = ∞ and ψ ≠ 0. For the second derivative to be infinite, the first derivative must be discontinuous, and so ψ itself must be nonsmooth (i.e., it must have a sharp corner; see Fig. 2-2). Thus, we see that it may be possible to obtain a finite value for both E and ψ at x = L + dx, provided that ψ is nonsmooth there. But what about the next point, x = L + 2 dx, and all the other points outside the box? If we try to use the same device, we end up with the requirement that ψ be nonsmooth at every point where V = ∞. A function that is continuous but which has a point-wise discontinuous first derivative is a contradiction in terms (i.e., a continuous f cannot be 100% corners. To have recognizable corners, we must have some (continuous) edges. We say that the first derivative of ψ must be piecewise continuous.) Hence, if V = ∞ at a single point, we might find a solution ψ which is finite at that point, with finite energy. If V = ∞ over a finite range of connected points, however, either E for the system is infinite, and ψ is finite over this region or E is not infinite (but is indeterminate) and ψ is zero over this region.

Figure 2-2 As the function f (x) approaches being nonsmooth, δ capproaches zero (the width of one point) and n approaches infinity.

We are not concerned with particles of infinite energy, and so we will say that the solution to Eq. (2-1) is ψ = 0.1

Turning now to Eq. (2-2) we ask what solutions ψ exist in the box having associated eigenvalues E that are finite and positive. Any function that, when twice differentiated, yields a negative constant times the selfsame function is a possible candidate for ψ. Such functions are sin(kx), cos(±kx), and exp(±ikx). But these functions are not all independent since, as we noted in Chapter 1,


     (2-3)


We thus are free to express ψ in terms of exp(±ikx) or else in terms of sin(kx) and cos(kx). We choose the latter because of their greater familiarity, although the final answer must be independent of this choice.

The most general form for the solution is


     (2-4)


where A, B, and k remain to be determined. As we have already shown, ψ is zero at x ≤ 0, xL and so we have as boundary conditions


     (2-5)



     (2-6)


Mathematically, this is precisely the same problem we have already solved in Chapter 1 for the standing waves in a clamped string. The solutions are


     (2-7)


One difference between Eq. (2-7) and the string solutions is that we have rejected the n = 0 solution in Eq. (2-7). For the string, this solution was for no vibration at all—a physically realizable circumstance. For the particle-in-a-box problem, this solution is rejected because it is not square-integrable. (It gives ψ = 0, which means no particle on the x axis, contradicting our starting premise. One could also reject this solution for the classical case since it means no energy in the string, which might contradict a starting premise depending on how the problem is worded.)

Let us check to be sure these functions satisfy Schrödinger’s equation


     (2-8)


This shows that the functions (2-7) are indeed eigenfunctions of H. We note in passing that these functions are acceptable in the sense of Chapter 1.

The only remaining parameter is the constant A. We set this to make the probability of finding the particle in the well equal to unity:


     (2-9)


This leads to (Problem 2-2)


     (2-10)


which completes the solving of Schrödinger’s time-independent equation for the problem. Our results are the normalized eigenfunctions


     (2-11)


and the corresponding eigenvalues, from Eq. (2-8),


     (2-12)


Each different value of n corresponds to a different stationary state of this system.

2-2 Detailed Examination of Particle-in-a-Box Solutions


Having solved the Schrödinger equation for the particle in the infinitely deep squarewell potential, we now examine the results in more detail.

2-2.A Energies


The most obvious feature of the energies is that, as we move through the allowed states (n = 1, 2, 3, …), E skips from one discrete, well-separated value to another (1, 4, 9 in units of h2/8m L2). Thus, the particle can have only certain discrete energies—the energy is quantized. This situation is normally indicated by sketching the allowed energy levels as horizontal lines superimposed on the potential energy sketch, as in Fig. 2-3a. The fact that each energy level is a horizontal line emphasizes the fact that E is a constant and is the same regardless of the x coordinate of the particle. For this reason, E is called a constant of motion. The dependence of E on n2 is displayed in the increased spacing between levels with increasing n in Fig. 2-3a. The number n is called a quantum number.

Figure 2-3 Allowed energies for a particle in various one-dimensional potentials. (a) “box” with infinite walls. (b) quadratic potential, .(c) V = −1/|x| Tendency for higher levels in (b) and (c) not to diverge as in (a) is due to larger “effective box size” for higher energies in (b) and (c).

We note also that E is proportional to L−2. This means that the more tightly a particle is confined, the greater is the spacing between the allowed energy levels. Alternatively, as the box is made wider, the separation between energies decreases and, in the limit of an infinitely wide box, disappears entirely. Thus, we associate quantized energies with spatial confinement.

For some systems, the degree of confinement of a particle depends on its total energy. For...

Erscheint lt. Verlag 30.8.2011
Sprache englisch
Themenwelt Naturwissenschaften Chemie Physikalische Chemie
Naturwissenschaften Physik / Astronomie Atom- / Kern- / Molekularphysik
Technik
ISBN-10 0-08-047078-5 / 0080470785
ISBN-13 978-0-08-047078-8 / 9780080470788
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 9,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 19,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quantenmechanik • Spektroskopie • Statistische …

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
Walter de Gruyter GmbH & Co.KG (Verlag)
54,95
Thermodynamik • Kinetik • Elektrochemie

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
Walter de Gruyter GmbH & Co.KG (Verlag)
59,95

von Peter W. Atkins; Julio de Paula; James J. Keeler

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
76,99