Fundamentals of Stochastic Networks (eBook)
312 Seiten
John Wiley & Sons (Verlag)
978-1-118-09298-9 (ISBN)
graphical networks
In today's era of interdisciplinary studies and research
activities, network models are becoming increasingly important in
various areas where they have not regularly been used. Combining
techniques from stochastic processes and graph theory to analyze
the behavior of networks, Fundamentals of Stochastic
Networks provides an interdisciplinary approach by including
practical applications of these stochastic networks in various
fields of study, from engineering and operations management to
communications and the physical sciences.
The author uniquely unites different types of stochastic,
queueing, and graphical networks that are typically studied
independently of each other. With balanced coverage, the book is
organized into three succinct parts:
* Part I introduces basic concepts in probability and stochastic
processes, with coverage on counting, Poisson, renewal, and Markov
processes
* Part II addresses basic queueing theory, with a focus on
Markovian queueing systems and also explores advanced queueing
theory, queueing networks, and approximations of queueing
networks
* Part III focuses on graphical models, presenting an introduction
to graph theory along with Bayesian, Boolean, and random
networks
The author presents the material in a self-contained style that
helps readers apply the presented methods and techniques to science
and engineering applications. Numerous practical examples are also
provided throughout, including all related mathematical
details.
Featuring basic results without heavy emphasis on proving
theorems, Fundamentals of Stochastic Networks is a suitable
book for courses on probability and stochastic networks, stochastic
network calculus, and stochastic network optimization at the
upper-undergraduate and graduate levels. The book also serves as a
reference for researchers and network professionals who would like
to learn more about the general principles of stochastic
networks.
OLIVER C. IBE, ScD, is Associate Professor in the Department of Electrical and Computer Engineering at the University of Massachusetts at Lowell. He has more than thirty years of experience in academia and the telecommunications industry in various technical and management capacities. Dr. Ibe's research interests include stochastic systems modeling, bioinformatics, and communication network performance modeling. He is the author of Converged Network Architectures: Delivering Voice over IP, ATM, and Frame Relay (Wiley).
Preface xi
Acknowledgments, xii
1 Basic Concepts in Probability 1
1.1 Introduction, 1
1.2 Random Variables, 1
1.3 Transform Methods, 5
1.4 Covariance and Correlation Coefficient, 8
1.5 Sums of Independent Random Variables, 8
1.6 Random Sum of Random Variables, 9
1.7 Some Probability Distributions, 11
1.8 Limit Theorems, 21
2 Overview of Stochastic Processes 26
2.1 Introduction, 26
2.2 Classification of Stochastic Processes, 27
2.3 Stationary Random Processes, 27
2.4 Counting Processes, 28
2.5 Independent Increment Processes, 29
2.6 Stationary Increment Process, 29
2.7 Poisson Processes, 30
2.8 Renewal Processes, 32
2.9 Markov Processes, 37
2.10 Gaussian Processes, 56
3 Elementary Queueing Theory 61
3.1 Introduction, 61
3.2 Description of a Queueing System, 61
3.3 The Kendall Notation, 64
3.4 The Little's Formula, 65
3.5 The M/M/1 Queueing System, 66
3.6 Examples of Other M/M Queueing Systems, 71
3.7 M/G/1 Queue, 79
4 Advanced Queueing Theory 93
4.1 Introduction, 93
4.2 M/G/1 Queue with Priority, 93
4.3 G/M/1 Queue, 99
4.4 The G/G/1 Queue, 105
4.5 Special Queueing Systems, 109
5 Queueing Networks 124
5.1 Introduction, 124
5.2 Burke's Output Theorem and Tandem Queues, 126
5.3 Jackson or Open Queueing Networks, 128
5.4 Closed Queueing Networks, 130
5.5 BCMP Networks, 132
5.6 Algorithms for Product-Form Queueing Networks, 138
5.7 Networks with Positive and Negative Customers, 144
6 Approximations of Queueing Systems and Networks 150
6.1 Introduction, 150
6.2 Fluid Approximation, 151
6.3 Diffusion Approximations, 155
7 Elements of Graph Theory 172
7.1 Introduction, 172
7.2 Basic Concepts, 172
7.3 Connected Graphs, 177
7.4 Cut Sets, Bridges, and Cut Vertices, 177
7.5 Euler Graphs, 178
7.6 Hamiltonian Graphs, 178
7.7 Trees and Forests, 179
7.8 Minimum Weight Spanning Trees, 181
7.9 Bipartite Graphs and Matchings, 182
7.10 Independent Set, Domination, and Covering, 186
7.11 Complement of a Graph, 188
7.12 Isomorphic Graphs, 188
7.13 Planar Graphs, 189
7.14 Graph Coloring, 191
7.14.1 Edge Coloring, 191
7.14.2 The Four-Color Problem, 192
7.15 Random Graphs, 192
7.16 Matrix Algebra of Graphs, 195
7.17 Spectral Properties of Graphs, 198
7.18 Graph Entropy, 201
7.19 Directed Acyclic Graphs, 201
7.20 Moral Graphs, 202
7.21 Triangulated Graphs, 202
7.22 Chain Graphs, 203
7.23 Factor Graphs, 204
8 Bayesian Networks 209
8.1 Introduction, 209
8.2 Bayesian Networks, 210
8.3 Classification of BNs, 214
8.4 General Conditional Independenceand d-Separation, 215
8.5 Probabilistic Inference in BNs, 215
8.6 Learning BNs, 227
8.7 Dynamic Bayesian Networks, 231
9 Boolean Networks 235
9.1 Introduction, 235
9.2 Introduction to GRNs, 236
9.3 Boolean Network Basics, 236
9.4 Random Boolean Networks, 238
9.5 State Transition Diagram, 239
9.6 Behavior of Boolean Networks, 240
9.7 Petri Net Analysis of Boolean Networks, 242
9.8 Probabilistic Boolean Networks, 250
9.9 Dynamics of a PBN, 251
9.10 Advantages and Disadvantages of Boolean Networks, 252
10 Random Networks 255
10.1 Introduction, 255
10.2 Characterization of Complex Networks, 256
10.3 Models of Complex Networks, 261
10.4 Random Networks, 265
10.5 Random Regular Networks, 267
10.6 Consensus over Random Networks, 268
10.7 Summary, 274
References 276
Index 280
Erscheint lt. Verlag | 24.8.2011 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik | |
Schlagworte | Communication Technology - Networks • Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • Kommunikationsnetze • Mathematics • Mathematik • Operations Research & Management Science • queuing theory • Statistics • Statistik • Stochastik • Unternehmensforschung u. Betriebswirtschaft • Warteschlangentheorie |
ISBN-10 | 1-118-09298-8 / 1118092988 |
ISBN-13 | 978-1-118-09298-9 / 9781118092989 |
Haben Sie eine Frage zum Produkt? |
Größe: 9,2 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich