Logic of Mathematics (eBook)
272 Seiten
John Wiley & Sons (Verlag)
978-1-118-03079-0 (ISBN)
Logic of Mathematics combines a full-scale introductory course in mathematical logic and model theory with a range of specially selected, more advanced theorems. Using a strict mathematical approach, this is the only book available that contains complete and precise proofs of all of these important theorems:
* Godel's theorems of completeness and incompleteness
* The independence of Goodstein's theorem from Peano arithmetic
* Tarski's theorem on real closed fields
* Matiyasevich's theorem on diophantine formulas
Logic of Mathematics also features:
* Full coverage of model theoretical topics such as definability, compactness, ultraproducts, realization, and omission of types
* Clear, concise explanations of all key concepts, from Boolean algebras to Skolem-Lowenheim constructions and other topics
* Carefully chosen exercises for each chapter, plus helpful solution hints
At last, here is a refreshingly clear, concise, and mathematically rigorous presentation of the basic concepts of mathematical logic-requiring only a standard familiarity with abstract algebra. Employing a strict mathematical approach that emphasizes relational structures over logical language, this carefully organized text is divided into two parts, which explain the essentials of the subject in specific and straightforward terms.
Part I contains a thorough introduction to mathematical logic and model theory-including a full discussion of terms, formulas, and other fundamentals, plus detailed coverage of relational structures and Boolean algebras, Godel's completeness theorem, models of Peano arithmetic, and much more.
Part II focuses on a number of advanced theorems that are central to the field, such as Godel's first and second theorems of incompleteness, the independence proof of Goodstein's theorem from Peano arithmetic, Tarski's theorem on real closed fields, and others. No other text contains complete and precise proofs of all of these theorems.
With a solid and comprehensive program of exercises and selected solution hints, Logic of Mathematics is ideal for classroom use-the perfect textbook for advanced students of mathematics, computer science, and logic.
ZOFIA ADAMOWICZ, PhD, is a professor at the Institute of Mathematics of the Polish Academy of Sciences in Warsaw. PAWEL ZBIERSKI, PhD, is a professor at the Department of Mathematics at Warsaw University and the coauthor of Hausdorff Gaps and Limits.
Partial table of contents:
MATHEMATICAL STRUCTURES AND THEIR THEORIES.
Relational Systems.
Boolean Algebras.
Terms and Formulas.
Substitution of Terms.
Theorems and Proofs.
Generalization Rule and Elimination of Constants.
Peano Arithmetic.
Ultraproducts.
Supplementary Questions.
SELECTED TOPICS.
Total Functions.
Incompleteness of Arithmetic.
Tarski's Theorem.
Matiyasevich's Theorem.
Guide to Further Reading.
References.
Index.
Erscheint lt. Verlag | 26.9.2011 |
---|---|
Reihe/Serie | Wiley Series in Pure and Applied Mathematics | Wiley Series in Pure and Applied Mathematics |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Logik / Mengenlehre |
Technik | |
Schlagworte | Computer Science • Computer Science - General Interest • Informatik • Logic & Foundations • Logik u. Grundlagen der Mathematik • Mathematics • Mathematik • Mathematische Logik • Populäre Themen i. d. Informatik • Populäre Themen i. d. Informatik |
ISBN-10 | 1-118-03079-6 / 1118030796 |
ISBN-13 | 978-1-118-03079-0 / 9781118030790 |
Haben Sie eine Frage zum Produkt? |
Größe: 10,3 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich