Mathematical Logic (eBook)
312 Seiten
John Wiley & Sons (Verlag)
978-1-118-03069-1 (ISBN)
mathematical reasoning
Mathematical Logic presents a comprehensive introduction
to formal methods of logic and their use as a reliable tool for
deductive reasoning. With its user-friendly approach, this book
successfully equips readers with the key concepts and methods for
formulating valid mathematical arguments that can be used to
uncover truths across diverse areas of study such as mathematics,
computer science, and philosophy.
The book develops the logical tools for writing proofs by
guiding readers through both the established "Hilbert" style of
proof writing, as well as the "equational" style that is emerging
in computer science and engineering applications. Chapters have
been organized into the two topical areas of Boolean logic and
predicate logic. Techniques situated outside formal logic are
applied to illustrate and demonstrate significant facts regarding
the power and limitations of logic, such as:
* Logic can certify truths and only truths.
* Logic can certify all absolute truths (completeness theorems of
Post and Gödel).
* Logic cannot certify all "conditional" truths, such as those
that are specific to the Peano arithmetic. Therefore, logic has
some serious limitations, as shown through Gödel's
incompleteness theorem.
Numerous examples and problem sets are provided throughout the
text, further facilitating readers' understanding of the
capabilities of logic to discover mathematical truths. In addition,
an extensive appendix introduces Tarski semantics and proceeds with
detailed proofs of completeness and first incompleteness theorems,
while also providing a self-contained introduction to the theory of
computability.
With its thorough scope of coverage and accessible style,
Mathematical Logic is an ideal book for courses in
mathematics, computer science, and philosophy at the
upper-undergraduate and graduate levels. It is also a valuable
reference for researchers and practitioners who wish to learn how
to use logic in their everyday work.
GEORGE TOURLAKIS, PhD, is University Professor of Computer Science and Engineering at York University, Canada. Dr. Tourlakis has authored or coauthored numerous articles in his areas of research interest, which include calculational logic, modal logic, computability, complexity theory, and arithmetical forcing.
Preface.
Acknowledgments.
PART I: BOOLEAN LOGIC.
1. The Beginning.
1.1 Boolean Formulae.
1.2 Induction on the Complexity of WFF: Some Easy Properties of
WFF.
1.3 Inductive definitions on formulae.
1.4 Proofs and Theorems.
1.5 Additional Exercises.
2. Theorems and Metatheorems.
2.1 More Hilbertstyle Proofs.
2.2 Equational-style Proofs.
2.3 Equational Proof Layout.
2.4 More Proofs: Enriching our Toolbox.
2.5 Using Special Axioms in Equational Proofs.
2.6 The Deduction Theorem.
2.7 Additional Exercises.
3. The Interplay between Syntax and Semantics.
3.1 Soundness.
3.2 Post's Theorem.
3.3 Full Circle.
3.4 Single-Formula Leibniz.
3.5 Appendix: Resolution in Boolean Logic.
3.6 Additional Exercises.
PART II: PREDICATE LOGIC.
4. Extending Boolean Logic.
4.1 The First Order Language of Predicate Logic.
4.2 Axioms and Rules of First Order Logic.
4.3 Additional Exercises.
5. Two Equivalent Logics.
6. Generalization and Additional Leibniz Rules.
6.1 Inserting and Removing "(& #8704;x)".
6.2 Leibniz Rules that Affect Quantifier Scopes.
6.3 The Leibniz Rules "8.12".
6.4 More Useful Tools.
6.5 Inserting and Removing "(& #8707;x)".
6.6 Additional Exercises.
7. Properties of Equality.
8. First Order Semantics -- Very Naïvely.
8.1 Interpretations.
8.2 Soundness in Predicate Logic.
8.3 Additional Exercises.
Appendix A: Gödel's Theorems and Computability.
A.1 Revisiting Tarski Semantics.
A.2 Completeness.
A.3 A Brief Theory of Computability.
A.3.1 A Programming Framework for Computable Functions.
A.3.2 Primitive Recursive Functions.
A.3.3 URM Computations.
A.3.4 Semi-Computable Relations; Unsolvability.
A.4 Godel's First Incompleteness Theorem.
A.4.1 Supplement: & #248;x(x) " is first order definable in
N.
References.
Index.
"Overall, he presents the material as if he were holding a
dialogue with the reader. An advanced independent reader with a
very strong background in mathematics would find the book helpful
in learning this area of mathematics. Summing Up:
Recommended." (Choice, April 2009)
"The book would be ideas as an introduction to classical logic
for students of mathematics, computer science or philosophy.
Due to the author's clear and approachable style, it can be
recommended to a large circle of readers interested in mathematical
logic as well." (Mathematical Review, Issue 2009e)
"I give this outstanding book my highest recommendation, whilst
being grateful that excellence in the logic-book 'business' is the
very opposite of a zero-sum game: there's plenty of room at the
top." (Computing Reviews, November 5, 2008)
Erscheint lt. Verlag | 1.3.2011 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Logik / Mengenlehre |
Technik | |
Schlagworte | Computer Science • Computer Science - General Interest • Informatik • Logic & Foundations • Logik • Logik u. Grundlagen der Mathematik • Mathematics • Mathematik • Mathematische Logik • Philosophical Logic • Philosophie • Philosophische Logik • Philosophy • Populäre Themen i. d. Informatik • Populäre Themen i. d. Informatik |
ISBN-10 | 1-118-03069-9 / 1118030699 |
ISBN-13 | 978-1-118-03069-1 / 9781118030691 |
Haben Sie eine Frage zum Produkt? |
Größe: 11,3 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich