System–level Modeling of MEMS - T Bechtold

System–level Modeling of MEMS

T Bechtold (Autor)

Software / Digital Media
562 Seiten
2013
Wiley-VCH Verlag GmbH (Hersteller)
978-3-527-64713-2 (ISBN)
199,95 inkl. MwSt
  • Keine Verlagsinformationen verfügbar
  • Artikel merken
Filling a gap in the literature, this is the first handbook to simultaneously address the three most important approaches of system-level modeling: physical modeling with lumped elements and Kirchhoffian networks, modal modeling to accurately describe the mechanical domain, and mathematical modeling employing, for example, model order reduction methods. By adopting this approach, the top editors and authors from industry and research have created a book that will set the standard for years to come. Writing on a clearly understandable and sufficiently detailed level, they familiarize readers with the physical and mathematical underpinnings of MEMS modeling, thus enabling users to choose the most suitable method for their particular application needs.Perfectly tailored to practitioners and engineers, this reference presents the advantages and pitfalls of each method -- and how to avoid the latter.

Tamara Bechtold is post-doctoral researcher at Philips/NXP Research Laboratories in the Netherlands. She obtained her PhD from the University of Freiburg, Germany, with a thesis on microsystems simulation conducted at the Institute of Microsystems Technology in the group of Jan Korvink. She is the author of one book and many scientific publications. As of 2009, Tamara Bechtold has more than ten years of experience in modeling and simulation of MEMS. Gabriele Schrag heads a research group in the field of MEMS modeling with a focus on methodologies for the virtual prototyping of microdevices and microsystems at the Technical University of Munich, Germany. In her diploma and doctoral studies she worked on modeling methods for electromechanical microdevices and microsystems with an emphasis on fluid-structure interaction and viscous damping effects, including coupled effects on the device and system level. Lihong Feng is a team leader in the research group of Computational Methods in Systems and Control theory headed by Professor Peter Benner, Max Planck Institute for Dynamics of Complex Technical Systems in Magdeburg, Germany. After her PhD from Fudan University in Shanghai, China, she joined the faculty of the State Key Laboratory of Application-Specific Integrated Circuits (ASIC) & System, Fudan University, Shanghai, China. From 2007 to 2008 she was a Humboldt research fellow in the working group of Mathematics in Industry and Technology at the Technical University of Chemnitz, Germany. In 2009-2010, she worked in the Laboratory for Microsystem Simulation, Department of Microsystems Engineering, University of Freiburg, Germany. Her research interests are in the field of reduced order modelling and fast numerical algorithms for control and optimization in Chemical Engineering, MEMS simulation, and circuit simulation.

Erscheint lt. Verlag 6.2.2013
Verlagsort Weinheim
Sprache englisch
Maße 250 x 150 mm
Gewicht 666 g
Themenwelt Technik Elektrotechnik / Energietechnik
ISBN-10 3-527-64713-9 / 3527647139
ISBN-13 978-3-527-64713-2 / 9783527647132
Zustand Neuware
Haben Sie eine Frage zum Produkt?