Regression Models for Time Series Analysis (eBook)

eBook Download: PDF
2005 | 1. Auflage
360 Seiten
John Wiley & Sons (Verlag)
978-0-471-46168-5 (ISBN)

Lese- und Medienproben

Regression Models for Time Series Analysis - Benjamin Kedem, Konstantinos Fokianos
Systemvoraussetzungen
166,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
A thorough review of the most current regression methods in time series analysis

Regression methods have been an integral part of time series analysis for over a century. Recently, new developments have made major strides in such areas as non-continuous data where a linear model is not appropriate. This book introduces the reader to newer developments and more diverse regression models and methods for time series analysis.

Accessible to anyone who is familiar with the basic modern concepts of statistical inference, Regression Models for Time Series Analysis provides a much-needed examination of recent statistical developments. Primary among them is the important class of models known as generalized linear models (GLM) which provides, under some conditions, a unified regression theory suitable for continuous, categorical, and count data.

The authors extend GLM methodology systematically to time series where the primary and covariate data are both random and stochastically dependent. They introduce readers to various regression models developed during the last thirty years or so and summarize classical and more recent results concerning state space models. To conclude, they present a Bayesian approach to prediction and interpolation in spatial data adapted to time series that may be short and/or observed irregularly. Real data applications and further results are presented throughout by means of chapter problems and complements.

Notably, the book covers:

* Important recent developments in Kalman filtering, dynamic GLMs, and state-space modeling

* Associated computational issues such as Markov chain, Monte Carlo, and the EM-algorithm

* Prediction and interpolation

* Stationary processes

BENJAMIN KEDEM, PhD, is Professor of Mathematics at the University of Maryland. KONSTANTINOS FOKIANOS, PhD, is Assistant Professor in the Department of Mathematics and Statistics at the University of Cyprus.

Dedication.

Preface.

Times Series Following Generalized Linear Models.

Regression Models for Binary Time Series.

Regression Models for Categorical Time Series.

Regression Models for Count Time Series.

Other Models and Alternative Approaches.

State Space Models.

Prediction and Interpolation.

Appendix: Elements of Stationary Processes.

References.

Index.

"...provides an excellent overview of modern regression methods in
time series analysis...accessible and illustrative...a valuable
resource to students, researchers, and practitioners. The
text reflects a deep appreciation of both theory and applications,
as well as a comprehensive understanding of a set of modeling
frameworks that are increasingly integral to modern time series
analysis." (Journal of the American Statistical Association,
March 2004)

"...highly recommended..." (Choice, Vol. 40, No. 6,
February 2003)

"...the book does what it sets out to do very well and will be
useful for both practitioners and researchers..." (Short Book
Reviews, April 2003)

"...can be recommended to teachers and students as material for
seminars and special lectures...very useful for applied
statisticians." (Zentralblatt Math, Vol.1011, No.11,
2003)

"...introduces the reader to relatively newer and somewhat more
diverse regression models and methods for time series analysis than
most standard texts." (Quarterly of Applied Mathematics,
Vol. LXI, No. 2, June 2003)

"...I gladly recommend this book..." (Technometrics, Vol.
45, No. 4, November 2003)

Erscheint lt. Verlag 11.3.2005
Reihe/Serie Wiley Series in Probability and Statistics
Wiley Series in Probability and Statistics
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte Regression Analysis • Regressionsanalyse • Statistics • Statistik • Time Series • Zeitreihen • Zeitreihenanalyse
ISBN-10 0-471-46168-7 / 0471461687
ISBN-13 978-0-471-46168-5 / 9780471461685
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 14,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Trigonometrie, Analytische Geometrie, Algebra, Wahrscheinlichkeit

von Walter Strampp

eBook Download (2024)
De Gruyter (Verlag)
94,95
Angewandte Analysis im Bachelorstudium

von Michael Knorrenschild

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99

von Siegfried Völkel; Horst Bach; Jürgen Schäfer …

eBook Download (2024)
Carl Hanser Verlag GmbH & Co. KG
34,99