Linear Models in Statistics (eBook)
688 Seiten
John Wiley & Sons (Verlag)
978-0-470-19260-3 (ISBN)
models--now in a valuable new edition
Since most advanced statistical tools are generalizations of the
linear model, it is neces-sary to first master the linear model in
order to move forward to more advanced concepts. The linear model
remains the main tool of the applied statistician and is central to
the training of any statistician regardless of whether the focus is
applied or theoretical. This completely revised and updated new
edition successfully develops the basic theory of linear models for
regression, analysis of variance, analysis of covariance, and
linear mixed models. Recent advances in the methodology related to
linear mixed models, generalized linear models, and the Bayesian
linear model are also addressed.
Linear Models in Statistics, Second Edition includes full
coverage of advanced topics, such as mixed and generalized linear
models, Bayesian linear models, two-way models with empty cells,
geometry of least squares, vector-matrix calculus, simultaneous
inference, and logistic and nonlinear regression. Algebraic,
geometrical, frequentist, and Bayesian approaches to both the
inference of linear models and the analysis of variance are also
illustrated. Through the expansion of relevant material and the
inclusion of the latest technological developments in the field,
this book provides readers with the theoretical foundation to
correctly interpret computer software output as well as effectively
use, customize, and understand linear models.
This modern Second Edition features:
* New chapters on Bayesian linear models as well as random and
mixed linear models
* Expanded discussion of two-way models with empty cells
* Additional sections on the geometry of least squares
* Updated coverage of simultaneous inference
The book is complemented with easy-to-read proofs, real data
sets, and an extensive bibliography. A thorough review of the
requisite matrix algebra has been addedfor transitional purposes,
and numerous theoretical and applied problems have been
incorporated with selected answers provided at the end of the book.
A related Web site includes additional data sets and SAS® code
for all numerical examples.
Linear Model in Statistics, Second Edition is a must-have book
for courses in statistics, biostatistics, and mathematics at the
upper-undergraduate and graduate levels. It is also an invaluable
reference for researchers who need to gain a better understanding
of regression and analysis of variance.
Alvin C. Rencher, PhD, is Professor of Statistics at Brigham Young University. Dr. Rencher is a Fellow of the American Statistical Association and the author of Methods of Multivariate Analysis and Multivariate Statistical Inference and Applications, both published by Wiley. G. Bruce Schaalje, PhD, is Professor of Statistics at Brigham Young University. He has authored over 120 journal articles in his areas of research interest, which include mixed linear models, small sample inference, and design of experiments.
Preface.
1. Introduction.
2. Matrix Algebra.
3. Random Vectors and Matrices.
4. Multivariate Normal Distribution.
5. Distribution of Quadratic Forms in y.
6. Simple Linear Regression.
7. Multiple Regression: Estimation.
8. Multiple Regression: tests of Hypotheses and Confidence
Intervals.
9. Multiple Regression: Model Validation and Diagnostics.
10. Multiple Regression: random x's.
11. Multiple Regression: Bayesian Inference.
12. Analysis-of-Variance Models.
13. One-Way Analysis-of-Variance: balanced Case.
14. Two-Way Analysis-of Variance: Balanced Case.
15. Analysis-of-Variance: The Cell Means Model for Unbalanced
Data.
16. Analysis-of-Covariance.
17. Linear Mixed Models.
18. Additional Models.
Appendix A. Answers and Hits to the Problems.
References.
Index.
"This indeed clearly written book will do great service for
advanced undergraduate and also for PhD students."
(International Statistical Review, December 2008)
"This indeed clearly written book will do great service for
advanced undergraduate and also for PhD students."
(International Statistical Review, Dec 2008)
"This well-written book represents various topics on linear
models with great clarity in an easy-to-understand style."
(CHOICE, Aug 2008)
Erscheint lt. Verlag | 12.7.2008 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik | |
Schlagworte | Angewandte Wahrscheinlichkeitsrechnung u. Statistik • Angew. Wahrscheinlichkeitsrechn. u. Statistik / Modelle • Applied Probability & Statistics • Applied Probability & Statistics - Models • Engineering statistics • Lineares Modell • Statistics • Statistik • Statistik in den Ingenieurwissenschaften |
ISBN-10 | 0-470-19260-7 / 0470192607 |
ISBN-13 | 978-0-470-19260-3 / 9780470192603 |
Haben Sie eine Frage zum Produkt? |
Größe: 3,9 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich