Edwin Diday, Centre De Recherche en Mathématiques de la Décision, Université Paris 9, France Edwin is a Professor of Computer Science, with 50 published papers, and 14 authored or edited books to his name. He has led international research teams in Symbolic Data Analysis, and is the founder of the field. M. Noirhomme-Fraiture, Institute of Computer Science, University of Namur, Belgium Monique Noirhomme-Fraiture is Professor and Head of the Unit of Applied Mathematics at the above faculty. She is involved in several HCI projects as well as having organized conferences and workshops within this field. She has contributed to 28 published papers and co-authored 2 books.
Contributors.
Foreword.
Preface.
ASSO Partners.
Introduction.
1. The state of the art in symbolic data analysis: overview and
future (Edwin Diday).
PART I. DATABASES VERSUS SYMBOLIC OBJECTS.
2. Improved generation of symbolic objects from relational
databases (Yves Lechevallier, Aicha El Golli and George
Hébrail).
3. Exporting symbolic objects to databases (Donato Malerba,
Floriana Esposito and Annalisa Appice).
4. A statistical metadata model for symbolic objects (Haralambos
Papageorgiou and Maria Vardaki).
5. Editing symbolic data (Monique-Noirhomme-Fraiture, Paula
Brito, Anne de Baenst-Vandenbroucke and Adolphe Nahimana).
6. The normal symbolic form (Marc Csernel and Francisco de A.T.
de Carvalho).
7. Visualization (Monique-Noirhomme-Fraiture and Adolphe
Nahimana).
PART II. UNSUPERVISED METHODS.
8. Dissimilarity and matching (Floriana Esposito, Donato Malerba
and Annalisa Appice).
9. Unsupervised divisive classification (Jean-Paul Rasson,
Jean-Yves Pirçon, Pascale Lallemand and Séverine
Adans).
10. Hierarchical and pyramidal clustering (Paula Brito and
Francisco de A.T. de Carvalho).
11 .Clustering methods in symbolic data analysis (Francisco de
A.T. de Carvalho, Yves Lechevallier and Rosanna Verde).
12. Visualizing symbolic data by Kohonen maps (Hans-Hermann
Bock).
13 .Validation of clustering structure: determination of the
number of clusters (André Hardy).
14. Stability measures for assessing a partition and its
clusters: application to symbolic data sets (Patrice Bertrand and
Ghazi Bel Mufti).
15. Principal component analysis of symbolic data described by
intervals (N.Carlo Lauro, Rosanna Verde and Antonio Irpino).
16. Generalized canonical analysis (N.Carlo Lauro, Rosanna Verde
and Antonio Irpino).
PART III .SUPERVISED METHODS.
17. Bayesian decision trees (Jean-Paul Rasson, Pascale Lallemand
and Séverine Adans).
18. Factor discriminant analysis (N.Carlo Lauro, Rosanna Verde
and Antonio Irpino).
19. Symbolic linear regression methodology (Filipe Afonso, Lynne
Billard, Edwin Diday and Mehdi Limam).
20. Multi-layer perceptrons and symbolic data (Fabrice Rossi and
Brieuc Conan-Guez).
PART IV. APPLICATION AND THE SODAS SOFTWARE.
21. Application to the Finnish, Spanish and Portuguese data of
the European Social Survey (Soile Mustjärvi and Seppo
Laaksonen).
22. People's life values and trust components in Europe:
symbolic data analysis for 20-22 countries (Seppo Laaksonen).
23. Symbolic analysis of the Time Use Survey in the Basque
country (Marta Mas and Haritz Olaeta).
24. SODAS2 software: overview and methodology (Anne de
Baenst-Vandenbroucke and Yves Lechevallier).
Index.
Erscheint lt. Verlag | 2.8.2008 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik | |
Schlagworte | Analysis • Better • Business data processing • Classical • Common • Computer Science • Data • Data Mining • Data Mining Statistics • DataSets • Datenanalyse • inadequate • Informatik • Information • interaction • Intervals • Large • Problem • represented • response • SDA • Standard • Statistical • Statistics • Statistik • Summaries • summarizing • Symbolic • techniques • Tool • Vital • Wirtschaftsinformatik |
ISBN-10 | 0-470-72355-6 / 0470723556 |
ISBN-13 | 978-0-470-72355-5 / 9780470723555 |
Haben Sie eine Frage zum Produkt? |
Größe: 7,4 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich