Markov Processes and Applications (eBook)

Algorithms, Networks, Genome and Finance
eBook Download: PDF
2008 | 1. Auflage
322 Seiten
Wiley (Verlag)
978-0-470-72186-5 (ISBN)

Lese- und Medienproben

Markov Processes and Applications -  Etienne Pardoux
Systemvoraussetzungen
71,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
"e;This well-written book provides a clear and accessible treatment of the theory of discrete and continuous-time Markov chains, with an emphasis towards applications. The mathematical treatment is precise and rigorous without superfluous details, and the results are immediately illustrated in illuminating examples. This book will be extremely useful to anybody teaching a course on Markov processes."e; Jean-Fran ois Le Gall, Professor at Universit de Paris-Orsay, France. Markov processes is the class of stochastic processes whose past and future are conditionally independent, given their present state. They constitute important models in many applied fields. After an introduction to the Monte Carlo method, this book describes discrete time Markov chains, the Poisson process and continuous time Markov chains. It also presents numerous applications including Markov Chain Monte Carlo, Simulated Annealing, Hidden Markov Models, Annotation and Alignment of Genomic sequences, Control and Filtering, Phylogenetic tree reconstruction and Queuing networks. The last chapter is an introduction to stochastic calculus and mathematical finance. Features include: The Monte Carlo method, discrete time Markov chains, the Poisson process and continuous time jump Markov processes. An introduction to diffusion processes, mathematical finance and stochastic calculus. Applications of Markov processes to various fields, ranging from mathematical biology, to financial engineering and computer science. Numerous exercises and problems with solutions to most of them

Etienne Pardoux, Centre for Mathematics and Informatics, University of Provence, Marseille, France Professor Pardoux has authored more than 100 research papers and three books, including the French version of this title. A vastly experienced teacher, he has successfully taught all the material in the book to students in Mathematics, Engineering and Biology.

Preface.

1. Simulations and the Monte Carlo method.

1.1 Description of the method.

1.2 Convergence theorems.

1.3 Simulation of random variables.

1.4 Variance reduction techniques.

1.5 Exercises.

2. Markov chains.

2.1 Definitions and elementary properties.

2.2 Examples.

2.3 Strong Markov property.

2.4 Recurrent and transient states.

2.5 The irreducible and recurrent case.

2.6 The aperiodic case.

2.7 Reversible Markov chain.

2.8 Rate of convergence to equilibrium.

2.9 Statistics of Markov chains.

2.10 Exercises.

3. Stochastic algorithms.

3.1 Markov chain Monte Carlo.

3.2 Simulation of the invariant probability.

3.3 Rate of convergence towards the invariant probability.

3.4 Simulated annealing.

3.5 Exercises.

4. Markov chains and the genome.

4.1 Reading DNA.

4.2 The i.i.d. model.

4.3 The Markov model.

4.4 Hidden Markov models.

4.5 Hidden semi-Markov model.

4.6 Alignment of two sequences.

4.7 A multiple alignment algorithm.

4.8 Exercises.

5. Control and filtering of Markov chains.

5.1 Deterministic optimal control.

5.2 Control of Markov chains.

5.3 Linear quadratic optimal control.

5.4 Filtering of Markov chains.

5.5 The Kalman-Bucy filter.

5.6 Linear-quadratic control with partial observation.

5.7 Exercises.

6. The Poisson process.

6.1 Point processes and counting processes.

6.2 The Poisson process.

6.3 The Markov property.

6.4 Large time behaviour.

6.5 Exercises.

7. Jump Markov processes.

7.1 General facts.

7.2 Infinitesimal generator.

7.3 The strong Markov property.

7.4 Embedded Markov chain.

7.5 Recurrent and transient states.

7.6 The irreducible recurrent case.

7.7 Reversibility.

7.8 Markov models of evolution and phylogeny.

7.9 Application to discretized partial differential
equations.

7.10 Simulated annealing.

7.11 Exercises.

8. Queues and networks.

8.1 M/M/1 queue.

8.2 M/M/1/K queue.

8.3 M/M/s queue.

8.4 M/M/s/s queue.

8.5 Repair shop.

8.6 Queues in series.

8.7 M/G/ infinity queue.

8.8 M/G/1 queue.

8.9 Open Jackson network.

8.10 Closed Jackson network.

8.11 Telephone network.

8.12 Kelly networks.

8.13 Exercises.

9. Introduction to mathematical finance.

9.1 Fundamental concepts.

9.2 European options in the discrete model.

9.3 The Black-Scholes model and formula.

9.4 American options in the discrete model.

9.5 American options in the Black-Scholes model.

9.6 Interest rate and bonds.

9.7 Exercises.

10. Solutions to selected exercises.

10.1 Chapter 1.

10.2 Chapter 2.

10.3 Chapter 3.

10.4 Chapter 4.

10.5 Chapter 5.

10.6 Chapter 6.

10.7 Chapter 7.

10.8 Chapter 8.

10.9 Chapter 9.

References

Index.

"Well-written, this book is suitable as a textbook for
teaching a postgraduate course on applied Markov processes."
(Mathmatical Assoc of America, June 2009)

"It does provide a good introduction to each of the five
application areas." (Mathematical Reviews, July 2010)

Erscheint lt. Verlag 20.11.2008
Reihe/Serie Wiley Series in Probability and Statistics
Wiley Series in Probability and Statistics
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte Applied Mathematics in Science • Finanz- u. Wirtschaftsstatistik • Markowscher Prozess • Mathematics • Mathematik • Mathematik in den Naturwissenschaften • Statistics • Statistics for Finance, Business & Economics • Statistik
ISBN-10 0-470-72186-3 / 0470721863
ISBN-13 978-0-470-72186-5 / 9780470721865
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 1,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich