Bayesian Analysis for the Social Sciences (eBook)
598 Seiten
Wiley (Verlag)
978-0-470-68663-8 (ISBN)
Simon Jackman is a political scientist by trade but has a tremendous amount of experience in using Bayesian methods for solving problems in the social and political sciences, and teaching Bayesian methods to social science students.
List of Figures.
List of Tables.
Preface.
Acknowledgments.
Introduction.
Part I: Introducing Bayesian Analysis.
1. The foundations of Bayesian inference.
1.1 What is probability?
1.2 Subjective probability in Bayesian statistics.
1.3 Bayes theorem, discrete case.
1.4 Bayes theorem, continuous parameter.
1.5 Parameters as random variables, beliefs as
distributions.
1.6 Communicating the results of a Bayesian analysis.
1.7 Asymptotic properties of posterior distributions.
1.8 Bayesian hypothesis testing.
1.9 From subjective beliefs to parameters and models.
1.10 Historical note.
2. Getting started: Bayesian analysis for simple
models.
2.1 Learning about probabilities, rates and proportions.
2.2 Associations between binary variables.
2.3 Learning from counts.
2.4 Learning about a normal mean and variance.
2.5 Regression models.
2.6 Further reading.
Part II: Simulation Based Bayesian Analysis.
3. Monte Carlo methods.
3.1 Simulation consistency.
3.2 Inference for functions of parameters.
3.3 Marginalization via Monte Carlo integration.
3.4 Sampling algorithms.
3.5 Further reading.
4. Markov chains.
4.1 Notation and definitions.
4.2 Properties of Markov chains.
4.3 Convergence of Markov chains.
4.4 Limit theorems for Markov chains.
4.5 Further reading.
5. Markov chain Monte Carlo.
5.1 Metropolis-Hastings algorithm.
5.2 Gibbs sampling.
6. Implementing Markov chain Monte Carlo.
6.1 Software for Markov chain Monte Carlo.
6.2 Assessing convergence and run-length.
6.3 Working with BUGS/JAGS from R.
6.4 Tricks of the trade.
6.5 Other examples.
6.6 Further reading.
Part III: Advanced Applications in the Social
Sciences.
7. Hierarchical Statistical Models.
7.1 Data and parameters that vary by groups: the case for
hierarchical modeling.
7.2 ANOVA as a hierarchical model.
7.3 Hierarchical models for longitudinal data.
7.4 Hierarchical models for non-normal data.
7.5 Multi-level models.
8. Bayesian analysis of choice making.
8.1 Regression models for binary responses.
8.2 Ordered outcomes.
8.3 Multinomial outcomes.
8.4 Multinomial probit.
9. Bayesian approaches to measurement.
9.1 Bayesian inference for latent states.
9.2 Factor analysis.
9.3 Item-response models.
9.4 Dynamic measurement models.
Part IV: Appendices.
Appendix A: Working with vectors and matrices.
Appendix B: Probability review.
B.1 Foundations of probability.
B.2 Probability densities and mass functions.
B.3 Convergence of sequences of random variabales.
Appendix C: Proofs of selected propositions.
C.1 Products of normal densities.
C.2 Conjugate analysis of normal data.
C.3 Asymptotic normality of the posterior density.
References.
Topic index.
Author index.
"This is a comprehensive text on applied Bayesian
statistics. Though it is primarily aimed at social scientists with
strong computational and statistical backgrounds, its scope should
appeal to a wider readership. I recommend it to anybody
interested in actually applying Bayesian methods."
(Significance, 1 June 2010)
"As in many texts, each chapter ends with a collection of exercises
which would make this text suitable for teaching a one-semester
course in Bayesian methods with applications in the social sciences
. . . with this small caveat, I was impressed with the text and
believe it would be a worthy candidate for a first Bayesian courses
that gives the student a balanced view of the theory and practice
of Bayesian thinking." (The American Statistician, 1 February 2011)
Erscheint lt. Verlag | 27.10.2009 |
---|---|
Reihe/Serie | Wiley Series in Probability and Statistics | Wiley Series in Probability and Statistics |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik | |
Schlagworte | Angewandte Wahrscheinlichkeitsrechnung u. Statistik • Applied Probability & Statistics • Bayesian analysis • Bayessches Verfahren • Bayes-Verfahren • Statistics • Statistik |
ISBN-10 | 0-470-68663-4 / 0470686634 |
ISBN-13 | 978-0-470-68663-8 / 9780470686638 |
Haben Sie eine Frage zum Produkt? |
Größe: 12,5 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich