MEMS-based Circuits and Systems for Wireless Communication -

MEMS-based Circuits and Systems for Wireless Communication (eBook)

eBook Download: PDF
2012 | 2013
XII, 332 Seiten
Springer US (Verlag)
978-1-4419-8798-3 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

MEMS-based Circuits and Systems for Wireless Communications provides comprehensive coverage of RF-MEMS technology from device to system level. This edited volume places emphasis on how system performance for radio frequency applications can be leveraged by Micro-Electro-Mechanical Systems (MEMS). Coverage also extends to innovative MEMS-aware radio architectures that push the potential of MEMS technology further ahead. 

This work presents a broad overview of the technology from MEMS devices (mainly BAW and Si MEMS resonators) to basic circuits, such as oscillators and filters, and finally complete systems such as ultra-low-power MEMS-based radios. Contributions from leading experts around the world are organized in three parts. Part I introduces RF-MEMS technology, devices and modeling and includes a prospective outlook on ongoing developments towards Nano-Electro-Mechanical Systems (NEMS) and phononic crystals. Device properties and models are presented in a circuit oriented perspective. Part II focusses on design of electronic circuits incorporating MEMS. Circuit design techniques specific to MEMS resonators are applied to oscillators and active filters. In Part III contributors discuss how MEMS can advantageously be used in radios to increase their miniaturization and reduce their power consumption. RF systems built around MEMS components such as MEMS-based frequency synthesis including all-digital PLLs, ultra-low power MEMS-based communication systems and a MEMS-based automotive wireless sensor node are described.


MEMS-based Circuits and Systems for Wireless Communications provides comprehensive coverage of RF-MEMS technology from device to system level. This edited volume places emphasis on how system performance for radio frequency applications can be leveraged by Micro-Electro-Mechanical Systems (MEMS). Coverage also extends to innovative MEMS-aware radio architectures that push the potential of MEMS technology further ahead. This work presents a broad overview of the technology from MEMS devices (mainly BAW and Si MEMS resonators) to basic circuits, such as oscillators and filters, and finally complete systems such as ultra-low-power MEMS-based radios. Contributions from leading experts around the world are organized in three parts. Part I introduces RF-MEMS technology, devices and modeling and includes a prospective outlook on ongoing developments towards Nano-Electro-Mechanical Systems (NEMS) and phononic crystals. Device properties and models are presented in a circuit oriented perspective. Part II focusses on design of electronic circuits incorporating MEMS. Circuit design techniques specific to MEMS resonators are applied to oscillators and active filters. In Part III contributors discuss how MEMS can advantageously be used in radios to increase their miniaturization and reduce their power consumption. RF systems built around MEMS components such as MEMS-based frequency synthesis including all-digital PLLs, ultra-low power MEMS-based communication systems and a MEMS-based automotive wireless sensor node are described.

Preface 5
Contents 7
Contributors 9
Acronyms 11
Part I NEMS/MEMS Devices 13
Chapter 
14 
1.1 Introduction 14
1.1.1 Thin-Film Bulk Acoustic Wave Resonators 16
1.1.2 Background 17
1.2 Technology 18
1.2.1 Aluminum Nitride 18
1.2.2 Process Flow for SMRs 19
1.3 Modeling BAW Resonators 21
1.3.1 Spurious Modes 21
1.3.2 One-Dimensional Mason Model 22
1.3.3 Electrical Equivalent Circuit (1D) 25
1.3.4 2D/3D Models 28
1.3.5 A/p Empirical Model 29
1.4 Conclusion 37
References 39
Chapter 
40 
2.1 Aluminum Nitride MEMS Contour-Mode Resonator Technology 40
2.1.1 One-Port AlN Contour-Mode Resonators 43
2.1.2 Two-Port Contour-Mode Resonators 46
2.1.3 Figures of Merit for AlN Contour-Mode Resonators 47
2.1.4 AlN Piezoelectric Films and Microfabrication Process for Contour-Mode Resonators 49
2.2 Aluminum Nitride Contour-Mode MEMS Oscillators 51
2.3 Aluminum Nitride Contour-Mode MEMS Filters 55
2.3.1 Electrically Coupled AlN Contour-Mode Filters 56
2.3.2 Mechanically Coupled AlN Contour-Mode Filters 58
2.4 Applications for Aluminum Nitride Contour-Mode MEMS Resonator Technology 62
2.5 Concluding Remarks and Future Directions 64
References 64
Chapter 
66 
3.1 Electromechanical Information Processing 66
3.2 NEMS Technology: Top-Down or Bottom-Up? 67
3.3 NEM Switches 73
3.4 NEM Relays 74
3.5 Nanoelectromechanical Field-Effect Transistors as Abrupt Hysteretic Switches 80
3.6 Nanoelectromechanical Resonators 84
3.6.1 Principles, Opportunities and Limits 84
3.6.2 High-Frequency Silicon Nanowire and Carbon Nanotube Resonators 88
3.6.3 From Resonant Gate to Vibrating Body Transistors 95
3.7 NEM Mixers and Single Nanotube Radio 100
3.8 Conclusions and Perspectives 102
References 103
Chapter 
106 
4.1 Overview of Physical Phenomena Used in Future RF MEMS Devices 106
4.1.1 Elastic Wave Propagation 107
4.1.1.1 Bulk Waves 107
4.1.1.2 Guided Waves 108
4.1.1.3 Elastic Waves in Periodic Media 110
4.1.2 Transduction Mechanisms for RF Devices 113
4.1.2.1 Piezoelectricity 114
4.1.2.2 Electrostriction 116
4.2 Acoustic RF Resonators and Bandpass Filters 117
4.2.1 Thickness-Shear Resonators 117
4.2.2 Guided Acoustic Wave Resonators and Filters 120
4.2.3 Tunable Thickness Extensional Resonators 121
4.3 Acoustic RF Devices Based on Phononic Crystals 123
4.3.1 Resonators and Filters 124
4.3.2 Multiplexers and Demultiplexers 125
4.4 Conclusion 126
References 126
Part II MEMS-Based Circuits 129
Chapter 
130 
5.1 Introduction 130
5.2 General Theory of High-Q Oscillators 131
5.2.1 Splitting of the Oscillator for Nonlinear Analysis 131
5.2.2 Phase Noise 134
5.2.2.1 Introduction 134
5.2.2.2 Linear Analysis 135
5.2.2.3 Nonlinear Time Variant Circuit 136
5.3 The Pierce Oscillator 137
5.3.1 Basic Circuit and Linear Analysis 137
5.3.2 Amplitude of Oscillation 140
5.3.3 Phase Noise 141
5.3.3.1 Introduction 141
5.3.3.2 Linear Calculation 142
5.3.3.3 Phase Noise of the Nonlinear Time Variant Circuit 142
5.3.4 Practical Implementations 144
5.4 Parallel-Resonance Oscillator 146
5.4.1 Basic Circuit and Linear Analysis 146
5.4.2 Amplitude of Oscillation 148
5.4.3 Phase Noise 150
5.4.3.1 Introduction 150
5.4.3.2 Linear Analysis 151
5.4.3.3 Phase Noise of the Nonlinear Time Variant Circuit 151
5.4.4 Practical Implementations 153
5.5 Series-Resonance Oscillator 156
5.5.1 Basic Circuit and Linear Analysis 156
5.5.2 Amplitude of Oscillation 159
5.5.3 Phase Noise 160
5.5.4 Practical Implementation 160
5.6 Comparison and Conclusion 162
References 163
Chapter 6 5.4GHz, 0.35µm BiCMOS 
164 
6.1 Introduction 165
6.2 Resonators and Oscillators in Transceivers 166
6.2.1 Resonators' Use in Transceivers 166
6.2.2 Oscillators' Use in Transceivers 166
6.2.2.1 Figure of Merit for Phase Noise Design 168
6.2.2.2 General Oscillator Design 168
6.2.3 LC Resonators 169
6.2.4 Phase Noise Versus Q-Factor 170
6.2.5 BAW Resonators 171
6.3 Above-IC Technology 174
6.4 FBAR-Based Single-Ended and Balanced Oscillators 177
6.4.1 Single-Ended Version 177
6.4.2 Balanced Version 181
6.4.3 Measurement Results 184
6.5 LC-Based Balanced Oscillator 186
6.5.1 Cross-Coupled Balanced Oscillator 187
6.5.2 Balanced Pierce Oscillator 189
6.5.3 LC Based Oscillators Versus FBAR-Based Oscillator 193
6.6 Conclusion 193
References 194
Chapter 
196 
7.1 Introduction 196
7.2 Quadrature Modulation, RF-MEMS Potential, and QVCO Design Background 197
7.2.1 Quadrature Signals in RF Communication Systems 197
7.2.2 Need for MEMS in RF Systems 198
7.2.3 QVCO Design Approach 200
7.3 BAW Technology and MEMS-Assisted RF Design 201
7.3.1 BAW Resonator as Tuning Element in RF Design 201
7.4 BAW-Tuned QVCO Analysis 205
7.4.1 RF Oscillator Design Using BAW Resonators 205
7.4.2 Coupling Mechanism and BQVCO Topology 207
7.4.3 Comparison of BAW- and LC-Stabilized Oscillators 208
7.4.4 Quadrature Autocalibration Loop 211
7.5 Conclusion 213
References 213
Chapter 
215 
8.1 Tunable BAW Filter Synthesis and Its Physical Implementation 216
8.1.1 BAW Resonator 216
8.1.2 Filter Topologies 216
8.1.2.1 Ladder Filter 216
8.1.2.2 Lattice Filter 217
8.1.3 Filter Synthesis 218
8.1.4 BAW Resonator Tuning 222
8.1.5 Implementation of the Tuning Cell: Design of the Parallel Component 223
8.1.5.1 Q-Enhanced Inductor 224
8.1.6 Filter with Q-Enhanced Inductors 225
8.1.6.1 Physical Implementation of the Tuning Cell with Q-Enhanced Inductors 225
8.1.6.2 Simulation Results 225
8.1.6.3 Measurement Results 226
8.1.6.4 Filter Architecture with Reduced Inductor Count 228
8.1.6.5 Inductorless Filter 229
8.2 Tuning Circuitry 231
8.2.1 Preliminary Discussion 231
8.2.2 Discussion on the Tuning Methods 232
8.2.2.1 Indirect Tuning Method: PLL with a VCO Master Cell 232
8.2.2.2 Indirect Tuning Method: Frequency-Locked Loop by Envelope Detection 234
8.2.3 Implementation of the Frequency-Locked Loop Using Envelope Detection 235
8.2.3.1 Principle of the Implemented FLL 235
8.2.3.2 Measurement Results 237
8.3 Conclusion and Perspectives 237
References 239
Part III MEMS-Based Systems 240
Chapter 
241 
9.1 Introduction 241
9.2 Utilization of RF MEMS in Low-Power Transceivers 242
9.2.1 Stabilization of Low-Power, Low-Noise RF Oscillators 244
9.2.2 Tuning of High-Q RF Amplifiers and Design Example 246
9.2.3 Resonator Input Matching 247
9.2.3.1 Passive Receiver Front-End Matching 249
9.2.3.2 Image-Reject Front-End Matching 251
9.3 Two-Receiver Asynchronous Chipset 253
9.3.1 System-Level Considerations, Power Requirements 253
9.3.2 Super-Regenerative Receiver Architecture 254
9.3.3 Uncertain-IF Chip 258
9.4 Conclusions/Toward the Future 262
References 263
Chapter 10 A 2.4-GHz Narrowband MEMS-Based Radio 
264 
10.1 Introduction 265
10.2 Duty Cycling for Long Node Autonomy and Current Limitations 265
10.3 Where to Use MEMS Components and How to Waive Their Limitations 267
10.4 MEMS-Based Radio Architecture 269
10.4.1 Low-Power Electronic Compensation of Silicon Resonator Imperfections 271
10.5 Frequency Synthesizer 272
10.5.1 BAW DCO Within ADPLL 272
10.6 Bi-frequency Reference Oscillator 274
10.6.1 Divider Chains with Low-Power Dynamic Divider 275
10.6.2 IF Relaxation Oscillator and Homodyne PLL 277
10.7 Receiver 279
10.7.1 RF Front-End Using BAW Resonators 279
10.7.2 Intermediate Frequency and Baseband 281
10.8 Transmitter 281
10.8.1 Quasi-Direct Modulation with Fractional Divider 281
10.8.2 DSB Up-Conversion Mixer with BAW Filtering 281
10.8.3 CMOS Power Amplifier 282
10.9 Experimental Results 283
10.9.1 32-kHz Reference Clock 284
10.9.2 Receiver Front-End 285
10.9.3 Frequency Synthesis 286
10.9.4 Receiver Bit-Error Rate 287
10.9.5 Modulated TX Signal 288
10.10 Conclusion 289
References 290
Chapter 
293 
11.1 Introduction 293
11.2 FBAR Characteristics as a Frequency Reference 294
11.3 The Whole System and Frequency Calibration Scheme 297
11.4 A Digitally Controlled FBAR Oscillator 299
11.4.1 Overall Design of the Oscillator Core 299
11.4.2 A Spurious-Resonance Suppressor 303
11.4.3 Principle of Frequency Tuning 305
11.4.3.1 Coarse Capacitors 306
11.4.3.2 Moderate Capacitors 307
11.4.4 Fine Frequency Tuning by a Sigma–Delta Capacitive DAC 308
11.4.4.1 A Principle of Frequency Tuning 309
11.5 Measurement 309
11.5.1 The Prototype Oscillator 309
11.5.2 Measurement Results 310
11.6 Conclusions 314
References 314
Chapter 
316 
12.1 Power Aware System Architecture 316
12.1.1 Application Scenario 316
12.1.2 System Power Optimization 317
12.2 Application of In-Tire-Pressure Monitoring 319
12.3 Power Aware Radio Architecture 322
12.3.1 BAW-Based Transmitter 325
12.3.2 BAW-Based LNA 328
12.4 Performance Summary 330
References 330
Index 332

Erscheint lt. Verlag 21.8.2012
Reihe/Serie Integrated Circuits and Systems
Zusatzinfo XII, 332 p.
Verlagsort New York
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Technik Nachrichtentechnik
Schlagworte BICMOS • Bulk Acoustic Wave (BAW) resonators • CMOS • Low power communication devices • MEMS • MEMS-based circuits • NEMS • RF and analog circuits • Silicon resonators
ISBN-10 1-4419-8798-3 / 1441987983
ISBN-13 978-1-4419-8798-3 / 9781441987983
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 14,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99
200 Aufgaben zum sicheren Umgang mit Quellen ionisierender Strahlung

von Jan-Willem Vahlbruch; Hans-Gerrit Vogt

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
34,99