Wave Propagation in Electromagnetic Media
Springer-Verlag New York Inc.
978-0-387-97066-0 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
The emphasis is on developing the necessary mathematical tech- niques, and on showing how these methods of mathematical physics can be effective in unifying the physics of wave propagation in electromagnetic media. Chapter 1 presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations, and their appli- cations to electromagnetic wave propagation under a variety of conditions.
1 Time-Varying Electromagnetic Fields.- 1.1. Maxwell's Equations.- 1.2. Conservation Laws.- 1.3. Scalar and Vector Potentials.- 1.4. Plane Electromagnetic Waves in a Nonconducting Medium.- 1.5. Plane Waves in a Conducting Medium.- 2 Hyperbolic Partial Differential Equations in Two Independent Variables.- 2.1. General Solution of the Wave Equation.- 2.2. D'Alembert's Solution of the Cauchy Initial Value Problem.- 2.3. Method of Characteristics for a Single First-Order Equation.- 2.4. Method of Characteristics for a First-Order System.- 2.5. Second-Order Quasilinear Partial Differential Equation.- 2.6. Domain of Dependence and Range of Influence.- 2.7. Some Basic Mathematical and Physical Principles.- 2.8. Propagation of Discontinuities.- 2.9. Weak Solutions and the Conservation Laws.- 2.10. Normal Forms for Second-Order Partial Differential Equations.- 2.11. Riemann's Method.- 2.12. Nonlinear Hyperbolic Equations in Two Independent Variables.- 3 Hyperbolic Partial Differential Equations in More Than Two Independent Variables.- 3.1. First-Order Quasilinear Equations in n Independent Variables.- 3.2. First-Order Fully Nonlinear Equations in n Independent Variables.- 3.3. Directional Derivatives in n Dimensions.- 3.4. Characteristic Surfaces in n Dimensions.- 3.5. Maxwell's Equations.- 3.6. Second-Order Quasilinear Equation in n Independent Variables.- 3.7. Geometry of Characteristics for Second-Order Systems.- 3.8. Ray Cone, Normal Cone, Duality.- 3.9. Wave Equation in n Dimensions.- Appendix: Similarity Transformations and Canonical Forms.- 3A.1. Geometric Considerations.- 3A.2. Orthogonal Transformations and Eigenvectors in Relation to Similarity Transformations.- 3A.3. Diagonalization of A?.- 4 Variational Methods.- 4.1. Principle of Least Time.- 4.2. One-Dimensional Calculus of Variations, Euler's Equation.- 4.3. Generalization to Functionals with More Than One Dependent Variable.- 4.4. Special Case.- 4.5. Hamilton's Variational Principle and Configuration Space.- 4.6. Lagrange's Equations of Motion.- 4.7. D'Alembert's Principle, Constraints, and Lagrange's Equations.- 4.8. Nonconservative Force Field, Velocity-Dependent Potential.- 4.9. Constraints Revisited, Undetermined Multipliers.- 4.10. Hamilton's Equations of Motion.- 4.11. Cyclic Coordinates.- 4.12. Principle of Least Action.- 4.13. Lagrange's Equations of Motion for a Continuum.- 4.14. Hamilton's Equations of Motion for a Continuum.- 5 Canonical Transformations and Hamilton-Jacobi Theory.- I. Canonical Transformations.- 5.1. Equations of Canonical Transformations and Generating Functions.- 5.2. Some Examples of Canonical Transformations.- II. Hamilton-Jacobi Theory.- 5.3. Derivation of the Hamilton-Jacobi Equation for Hamilton's Principle Function.- 5.4. S Related to a Variational Principle.- 5.5. Application to Harmonic Oscillator.- 5.6. Hamilton's Characteristic Function.- 5.7. Application to n Harmonic Oscillators.- 5.8. Hamilton-Jacobi Theory Related to Characteristic Theory.- 5.9. Hamilton-Jacobi Theory and Wave Propagation.- 5.10. Hamilton-Jacobi Theory and Quantum Mechanics.- 6 Quantum Mechanics-A Survey.- 7 Plasma Physics and Magnetohydrodynamics.- 7.1. Fluid Dynamics Equations-General Treatment.- 7.2. Application of Fluid Dynamics Equations to Magnetohydrodynamics.- 7.3. Application of Characteristic Theory to Magnetohydrodynamics.- 7.4. Linearization of the Field Equations.- 8 The Special Theory of Relativity.- 8.1. Collapse of the Ether Theory.- 8.2. The Lorentz Transformation.- 8.3. Maxwell's Equations with Respect to a Lorentz Transformation.- 8.4. Contraction of Rods and Time Dilation.- 8.5. Addition of Velocities.- 8.6. World Lines and Light Cones.- 8.7. Covariant Formulation of the Laws of Physics in Minkowski Space.- 8.8. Covariance of the Electromagnetic Equations.- 8.9. Force and Energy Equations in Relativistic Mechanics.- 8.10. Lagrangian Formulation of Equations of Motion in Relativistic Mechanics.- 8.11. Covariant Lagrangian.
Zusatzinfo | biography |
---|---|
Verlagsort | New York, NY |
Sprache | englisch |
Gewicht | 605 g |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Mechanik |
Technik ► Elektrotechnik / Energietechnik | |
ISBN-10 | 0-387-97066-5 / 0387970665 |
ISBN-13 | 978-0-387-97066-0 / 9780387970660 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich