A Feature-Centric View of Information Retrieval (eBook)

(Autor)

eBook Download: PDF
2011 | 2011
XII, 168 Seiten
Springer Berlin (Verlag)
978-3-642-22898-8 (ISBN)

Lese- und Medienproben

A Feature-Centric View of Information Retrieval - Donald Metzler
Systemvoraussetzungen
53,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Commercial Web search engines such as Google, Yahoo, and Bing are used every day by millions of people across the globe. With their ever-growing refinement and usage, it has become increasingly difficult for academic researchers to keep up with the collection sizes and other critical research issues related to Web search, which has created a divide between the information retrieval research being done within academia and industry.  Such large collections pose a new set of challenges for information retrieval researchers.

In this work, Metzler describes highly effective information retrieval models for both smaller, classical data sets, and larger Web collections. In a shift away from heuristic, hand-tuned ranking functions and complex probabilistic models, he presents feature-based retrieval models. The Markov random field model he details goes beyond the traditional yet ill-suited bag of words assumption in two ways. First, the model can easily exploit various types of dependencies that exist between query terms, eliminating the term independence assumption that often accompanies bag of words models. Second, arbitrary textual or non-textual features can be used within the model. As he shows, combining term dependencies and arbitrary features results in a very robust, powerful retrieval model. In addition, he describes several extensions, such as an automatic feature selection algorithm and a query expansion framework. The resulting model and extensions provide a flexible framework for highly effective retrieval across a wide range of tasks and data sets.

A Feature-Centric View of Information Retrieval provides graduate students, as well as academic and industrial researchers in the fields of information retrieval and Web search with a modern perspective on information retrieval modeling and Web searches.



Donald Metzler is a Research Scientist in the Natural Language Group at the University of Southern California's Information Sciences Institute. Prior to that he was a Research Scientist in the Search and Computational Advertising group at Yahoo! Research. He received his Ph.D. from the University of Massachusetts in 2007. He is an active member of the information retrieval and Web search communities, having served on the program committees of SIGIR, WWW, WSDM, HLT, EMNLP, and ICML. He has published over 35 research papers, and has 16 patents pending. His research interests include information retrieval, Web search, computational advertising, and applications of machine learning to large-scale text problems.

Donald Metzler is a Research Scientist in the Natural Language Group at the University of Southern California's Information Sciences Institute. Prior to that he was a Research Scientist in the Search and Computational Advertising group at Yahoo! Research. He received his Ph.D. from the University of Massachusetts in 2007. He is an active member of the information retrieval and Web search communities, having served on the program committees of SIGIR, WWW, WSDM, HLT, EMNLP, and ICML. He has published over 35 research papers, and has 16 patents pending. His research interests include information retrieval, Web search, computational advertising, and applications of machine learning to large-scale text problems.

Introduction.- Classical Retrieval Models.- Feature-Based Ranking.- Feature-Based Query Expanion.- Query-Dependent Feature Weighting.- Model Learning.

Erscheint lt. Verlag 18.9.2011
Reihe/Serie The Information Retrieval Series
The Information Retrieval Series
Zusatzinfo XII, 168 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Mathematik / Informatik Mathematik
Technik
Schlagworte “Bag of Words” models • Information Retrieval • learning to rank • Markov models • model mearing • Search Engines • Web Queries
ISBN-10 3-642-22898-4 / 3642228984
ISBN-13 978-3-642-22898-8 / 9783642228988
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Konzepte, Methoden, Lösungen und Arbeitshilfen für die Praxis

von Ernst Tiemeyer

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
69,99
Konzepte, Methoden, Lösungen und Arbeitshilfen für die Praxis

von Ernst Tiemeyer

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
69,99
Der Weg zur professionellen Vektorgrafik

von Uwe Schöler

eBook Download (2024)
Carl Hanser Verlag GmbH & Co. KG
29,99