Combinatorial Set Theory (eBook)

With a Gentle Introduction to Forcing
eBook Download: PDF
2011
XVI, 456 Seiten
Springer London (Verlag)
978-1-4471-2173-2 (ISBN)

Lese- und Medienproben

Combinatorial Set Theory -  Lorenz J. Halbeisen
Systemvoraussetzungen
139,09 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book provides a self-contained introduction to modern set theory and also opens up some more advanced areas of current research in this field. The first part offers an overview of classical set theory wherein the focus lies on the axiom of choice and Ramsey theory. In the second part, the sophisticated technique of forcing, originally developed by Paul Cohen, is explained in great detail. With this technique, one can show that certain statements, like the continuum hypothesis, are neither provable nor disprovable from the axioms of set theory. In the last part, some topics of classical set theory are revisited and further developed in the light of forcing. The notes at the end of each chapter put the results in a historical context, and the numerous related results and the extensive list of references lead the reader to the frontier of research. This book will appeal to all mathematicians interested in the foundations of mathematics, but will be of particular use to graduates in this field.
This book provides a self-contained introduction to modern set theory and also opens up some more advanced areas of current research in this field. The first part offers an overview of classical set theory wherein the focus lies on the axiom of choice and Ramsey theory. In the second part, the sophisticated technique of forcing, originally developed by Paul Cohen, is explained in great detail. With this technique, one can show that certain statements, like the continuum hypothesis, are neither provable nor disprovable from the axioms of set theory. In the last part, some topics of classical set theory are revisited and further developed in the light of forcing. The notes at the end of each chapter put the results in a historical context, and the numerous related results and the extensive list of references lead the reader to the frontier of research. This book will appeal to all mathematicians interested in the foundations of mathematics, but will be of particular use to graduates in this field.

The Setting.- Overture: Ramsey's Theorem.- The Axioms of Zermelo-Fraenkel Set Theory.- Cardinal Relations in ZF only.- The Axiom of Choice.- How to Make Two Balls from One.- Models of Set Theory with Atoms.- Twelve Cardinals and their Relations.- The Shattering Number Revisited.- Happy Families and their Relatives.- Coda: A Dual Form of Ramsey's Theorem.- The Idea of Forcing.- Martin's Axiom.- The Notion of Forcing.- Models of Finite Fragments of Set Theory.- Proving Unprovability.- Models in which AC Fails.- Combining Forcing Notions.- Models in which p = c.- Properties of Forcing Extensions.- Cohen Forcing Revisited.- Silver-Like Forcing Notions.- Miller Forcing.- Mathias Forcing.- On the Existence of Ramsey Ultrafilters.- Combinatorial Properties of Sets of Partitions.- Suite.

Erscheint lt. Verlag 24.11.2011
Reihe/Serie Springer Monographs in Mathematics
Springer Monographs in Mathematics
Zusatzinfo XVI, 456 p.
Verlagsort London
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Allgemeines / Lexika
Mathematik / Informatik Mathematik Logik / Mengenlehre
Technik
Schlagworte Axiom of choice • Cardinal Characteristics of the Continuum • Combinatorics of Forcing • Consistency and Independence Results • Continuum Hypothesis • forcing • forcing technique • Infinite Combinatorics • Ramsey theory • set theory
ISBN-10 1-4471-2173-2 / 1447121732
ISBN-13 978-1-4471-2173-2 / 9781447121732
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich