Emerging Nanotechnologies in Dentistry -

Emerging Nanotechnologies in Dentistry (eBook)

Processes, Materials and Applications
eBook Download: PDF | EPUB
2011 | 1. Auflage
412 Seiten
Elsevier Science (Verlag)
978-1-4557-7857-7 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
131,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
New nanomaterials are leading to a range of emerging dental treatments that utilize more biomimetic materials that more closely duplicate natural tooth structure (or bone, in the case of implants). The use of nanostructures that will work in harmony with the body's own regenerative processes (eg, to restore tooth structure or alveolar bone) are moving into clinical practice. This book brings together an international team of experts from the fields of nanomaterials, biomedical engineering and dentistry, to cover the new materials and techniques with potential for use intra-orally or extra-orally for the restoration, fixation, replacement, or regeneration of hard and soft tissues in and about the oral cavity and craniofacial region. New dental nanotechnologies include the use of advanced inorganic and organic materials, smart and biomimetic materials, tissue engineering and drug delivery strategies. - Book prepared by an interdisciplinary and international group of bio-nanomaterial scientists and dental/oral biomedical researchers - Comprehensive professional reference for the subject covering materials fabrication and use of materials for all major diagnostic and therapeutic dental applications - repair,restoration, regeneration, implants and prevention - Book focuses in depth on the materials manufacturing processes involved with emphasis on pre-clinical and clinical applications, use and biocompatibility
New nanomaterials are leading to a range of emerging dental treatments that utilize more biomimetic materials that more closely duplicate natural tooth structure (or bone, in the case of implants). The use of nanostructures that will work in harmony with the body's own regenerative processes (eg, to restore tooth structure or alveolar bone) are moving into clinical practice. This book brings together an international team of experts from the fields of nanomaterials, biomedical engineering and dentistry, to cover the new materials and techniques with potential for use intra-orally or extra-orally for the restoration, fixation, replacement, or regeneration of hard and soft tissues in and about the oral cavity and craniofacial region. New dental nanotechnologies include the use of advanced inorganic and organic materials, smart and biomimetic materials, tissue engineering and drug delivery strategies. - Book prepared by an interdisciplinary and international group of bio-nanomaterial scientists and dental/oral biomedical researchers- Comprehensive professional reference for the subject covering materials fabrication and use of materials for all major diagnostic and therapeutic dental applications repair,restoration, regeneration, implants and prevention- Book focuses in depth on the materials manufacturing processes involved with emphasis on pre-clinical and clinical applications, use and biocompatibility

Front Cover 1
Emerging Nanotechnologies in Dentistry 4
Copyright Page 5
Contents 6
Foreword 16
Acknowledgments 18
Dedication 20
List of Contributors 22
1 Nanotechnology and the Future of Dentistry 26
1.1 Introduction 26
1.2 Nanotechnology Approaches 27
1.3 Nanotechnology to Nanomanufacturing 28
1.3.1 Top-Down Approach 29
1.3.2 Bottom-Up Approach 31
1.4 Nanodentistry 35
1.5 Future Directions and Conclusions 39
References 39
2 Nanoparticles for Dental Materials: Synthesis, Analysis, and Applications 40
2.1 Introduction: Why Use Nanoparticles? 41
2.2 Synthesis of Nanoparticles 41
2.2.1 Synthesis by Mechanical Attrition 42
2.2.2 Synthesis Through Sol–Gel Process 42
2.2.2.1 Functionalization of Oxide Nanoparticles 44
2.2.3 Synthesis of Silsesquioxane Nanoparticles 44
2.2.4 Synthesis of Polymer-Templated Nanoparticles 45
2.3 Examples of Dental Materials Using Nanoparticles 45
2.3.1 Nanocomposites Containing Oxide Nanoparticles 45
2.3.1.1 Nanofill Composites 46
2.3.1.2 Nanohybrid Composites 47
2.3.2 Silsesquioxane-Based Composites 48
2.3.3 Calcium Phosphate and Calcium Fluoride Nanoparticles-Based Composites 50
2.3.4 Nanoparticles in Glass Ionomer Systems 50
2.3.5 Nanotechnology in Dental Adhesives 51
2.4 Selected Properties of Dental Materials Containing Nanoparticles 51
2.4.1 Optical Properties 51
2.4.2 Wear Properties 52
2.4.3 Mechanical Properties 53
2.5 Clinical Experience with Dental Materials Containing Nanoparticles 54
2.6 Conclusions 55
References 55
3 Antimicrobial Nanoparticles in Restorative Composites 60
3.1 Introduction 60
3.2 Antibacterial Restorative Composites 61
3.2.1 Filler Phase Modification 61
3.2.1.1 Released Antibacterial Agents 61
3.2.1.2 Nonreleased Antibacterial Agents 62
3.2.2 Matrix Phase Modification 62
3.2.2.1 Released Antibacterial Agents 62
3.2.2.2 Nonreleased Antibacterial Agents 63
3.3 Antimicrobial Macromolecules 63
3.3.1 Polycationic Disinfectants 63
3.3.2 Polyethyleneimine 64
3.4 Nanoparticles 65
3.4.1 Polyethyleneimine Nanoparticles 65
3.4.1.1 Synthesis 65
3.4.1.2 Characterization 66
3.4.1.3 Incorporation of PEI Nanoparticles 68
3.5 Conclusions 69
References 69
4 Nanotechnology in Operative Dentistry: A Perspective Approach of History, Mechanical Behavior, and Clinical Application 74
4.1 Introduction 75
4.2 Historical Review: Nanotechnology Applications in Operative Dentistry 75
4.3 Biomimetics 75
4.4 Fillers in Composite Resins 77
4.5 SEM and EDS Evaluation 78
4.6 Filler Weight Content (wt%) 79
4.7 Water Sorption 79
4.8 Mechanical Behavior 81
4.8.1 Compressive Strength 82
4.8.2 Diametral Tensile Strength 83
4.8.3 Flexural Strength and Flexural Modulus 84
4.8.4 Microhardness 85
4.8.5 Nanohardness 87
4.8.6 Wear Resistance 87
4.9 Clinical Applications 91
4.10 Conclusions 93
Acknowledgments 93
References 93
5 Impact of Nanotechnology on Dental Implants 96
5.1 Introduction 96
5.2 Nanoscale Surface Modifications 99
5.3 Interactions of Surface Dental Implants with Blood 100
5.4 Interactions Between Surfaces and MSCs 101
5.4.1 Origin of MSCs 101
5.4.2 Migration, Adhesion, and Proliferation 102
5.4.3 Differentiation 103
5.5 Tissue Integration 103
5.6 Conclusion 105
Acknowledgments 105
References 105
6 Titanium Surface Modification Techniques for Dental Implants—From Microscale to Nanoscale 110
6.1 Introduction 110
6.2 Titanium Surface Modification Methods 111
6.2.1 Morphological Modification of Titanium Surface 112
6.2.2 Physicochemical Modification of Titanium Surface 112
6.2.3 Biochemical Modification of Titanium Surface 113
6.2.3.1 Osteoinductive Biomolecular Cues 113
6.2.3.2 Micro- and Nanoscale Coating of HA/Calcium Phosphate/Alumina 115
6.2.3.3 Organic Nanoscale SAMs 117
6.2.3.4 Hydrogels on Titanium Surface 117
6.2.3.5 Antibacterial Titanium Surfaces 119
6.3 Limitations and Conclusion 121
Acknowledgment 122
References 122
7 Titanium Nanotubes as Carriers of Osteogenic Growth Factors and Antibacterial Drugs for Applications in Dental Implantology 128
7.1 Introduction 128
7.2 Titanium Nanotubes 129
7.3 TiO2 Nanotubes for Implant Fabrication 130
7.4 Functionalization of TiO2 Nanotubes with Growth Factors and Antibacterial/Anti-Inflammatory Drugs 130
7.5 Conclusions 134
References 135
8 Cellular Responses to Nanoscale Surface Modifications of Titanium Implants for Dentistry and Bone Tissue Engineering Applications 138
8.1 Introduction 138
8.2 Nanotopography Generated from Surface Modification of Ti Implants 139
8.2.1 Surface Modification of Ti Implants with Inorganic Materials/Nanoparticles 140
8.2.2 Surface Modifications of Ti Implants with Polymers 142
8.3 Nanotopography and Protein Absorption 143
8.4 Nanotopography Alters Osteoblast Responses 143
8.4.1 Cell Morphology 143
8.4.2 Cell Adhesion 144
8.4.3 Cell Proliferation 144
8.4.4 Bioactive Molecules 150
8.4.5 Osseointegration 151
8.5 Nanotopography and Stem Cell Responses 151
8.5.1 Effects of Nanotopography on Endothelial Progenitor Cells 152
8.5.2 Effects of Nanotopography on Bone Marrow Stem Cells 152
8.6 Conclusions 153
References 153
9 Corrosion Resistance of Ti6Al4V with Nanostructured TiO2 Coatings 162
9.1 Introduction 162
9.1.1 SiO2–CaO Coatings on Ti6Al4V Alloys 163
9.1.2 SiO2 and SiO2–TiO2 Intermediate Coatings on Titanium and Ti6Al4V Alloy 163
9.1.3 Coated HA on Ti6Al4V by Electrophoretic Deposition 164
9.1.4 Double-Layer Glass–Ceramic Coatings on Ti6Al4V 164
9.2 Nanostructured TiO2 Deposited on Ti6Al4V 164
9.2.1 Preparation of the Ti6Al4V Electrode 165
9.2.2 TiO2 Nanoparticles Coating 165
9.3 Characterization Techniques 165
9.3.1 SEM 165
9.3.2 Raman Microscopy 167
9.4 Corrosion Tests with Electrochemical Techniques 169
9.4.1 OCV and Tafel Analysis 170
9.4.2 EIS 172
9.5 Conclusions 172
References 172
10 Multiwalled Carbon Nanotubes/Hydroxyapatite Nanoparticles Incorporated GTR Membranes 176
10.1 Introduction 176
10.2 Periodontal Defects and GTR 177
10.2.1 Studies Using Nonresorbable Membranes 178
10.2.2 Studies Using Bioresorbable Membranes 178
10.2.3 Layer-Designed Membranes for GTR 179
10.3 Use of Electrospinning for Preparation of Nanocomposites 180
10.3.1 Electrospinning 180
10.3.2 CNTs Incorporated into Nanofibers 181
10.3.3 Organic–Inorganic Composite Nanofibers 182
10.4 GTR Membranes Based on Electrospun CNT/HA Nanoparticles Incorporated Composite Nanofibers 183
10.4.1 Fabrication of PLLA and PLLA/HA Composite Nanofibers 184
10.4.2 Fabrication of PLLA/MWCNTs/HA Composite Nanofibers 184
10.4.3 Characterization of PLLA/MWCNTs/HA Composite Nanofibers 185
10.4.4 Cell Culture on PLLA/MWCNTs/HA Composite Nanofibers Membranes 186
10.4.5 In-Vivo Implantation of PLLA/MWCNTs/HA Membranes 187
10.5 Conclusions 190
References 190
11 Fabrication of PEG Hydrogel Micropatterns by Soft-Photolithography and PEG Hydrogel as Guided Bone Regeneration Membrane in Dental Implantology 196
11.1 Introduction 197
11.2 Microfabrication 197
11.2.1 Microfabrication Techniques 198
11.2.1.1 Property Modification 198
11.2.1.2 Microfabrication by Patterning 198
11.2.1.3 Additive Microfabrication 198
11.2.1.4 Subtractive Microfabrication 198
11.3 Lithography 199
11.4 Hydrogel as a Biomaterial 199
11.5 Soft-Photolithography of Hydrogel Micropatterns 200
11.5.1 Fabrication of PDMS Stamp 200
11.5.1.1 Design of the Photomask 200
11.5.1.2 Fabrication of “Master” or Negative Mould 200
11.5.1.3 Fabrication of PDMS 200
11.5.2 Surface Functionalization of Silicon Substrates by Silanization 202
11.5.3 Soft-Photolithography 203
11.6 PEG Hydrogel as GBR Membrane in Dental Implantology 209
11.7 Conclusions 210
Acknowledgments 210
References 210
12 Nano-Apatitic Composite Scaffolds for Stem Cell Delivery and Bone Tissue Engineering 214
12.1 Introduction 214
12.2 Development of Nano-Apatitic and Macroporous Scaffolds 215
12.3 Cell Infiltration into Scaffold 217
12.4 Biomimetic Nano-Apatite–Collagen Fiber Scaffold 220
12.5 Fast Fracture of Nano-Apatite Scaffold 220
12.6 Fatigue of Nano-Apatite Scaffold 222
12.7 Nano-Apatite Scaffold–Human Umbilical Cord Stem Cell Interactions 223
12.8 Seeding Bone Marrow Stem Cells on Nano-Apatite Scaffolds 226
12.9 Conclusions 228
Acknowledgments 229
References 229
13 Self-Assembly of Proteins and Peptides and Their Applications in Bionanotechnology and Dentistry 234
13.1 Introduction 234
13.2 Mechanism of Molecular Self-Assembly 235
13.3 Classification of Self-Assembly 235
13.4 Self-Assembly of Proteins and Peptides 238
13.5 Bionanotechnology Applications 238
13.6 Peptide Nanofibers, Nanotubes, and Nanowires 239
13.7 Three-Dimensional Peptide Matrix Scaffolds 243
13.8 Advantages and Limitations of Self-Assembling Peptide Matrix Scaffolds 245
13.9 Self-Assembly in Regenerative Biology and Dentistry 245
13.10 Conclusions 247
References 247
14 Bone Regeneration Using Self-Assembled Nanoparticle-Based Scaffolds 250
14.1 Introduction 250
14.2 Scaffolding Biomaterials 252
14.3 Growth Factors 254
14.4 Controlled Release Technology 256
14.5 Controlled Release Systems for Bone Regeneration 257
14.6 Conclusions 260
References 260
15 Surface Engineering of Dental Tools with Diamond for Improved Life and Performance 264
15.1 Tooth Materials 265
15.2 Dental Burs 266
15.3 Chemical Vapor Deposition of Diamond Films onto Dental Burs 269
15.3.1 Plasma-Enhanced CVD 270
15.3.1.1 Microwave Plasma-Enhanced CVD 270
15.3.1.2 RF Plasma-Enhanced CVD 270
15.3.1.3 DC Plasma-Enhanced CVD 271
15.3.2 Hot Filament CVD 271
15.3.2.1 Growth Mechanisms 271
15.3.2.2 Filament Characteristics 273
15.3.2.3 Diamond Nucleation Process 274
15.3.3 Controlling Structure and Morphology 275
15.3.3.1 Effects of Temperature 275
15.3.3.2 Effect of Negative BEN on the Dental Bur 279
15.3.3.3 Effects of Substrate Preparation on Diamond Deposition 284
15.4 Bur Performance Investigations 284
15.4.1 Tool Preparation 284
15.4.2 CVD Diamond Deposition on the Dental Burs 284
15.4.3 Dental Bur Machining: Drilling Experiments 284
15.4.4 Dental Bur Machining: Machining Experiments on Human Teeth 285
15.4.5 Performance Testing 286
15.4.6 Drilling Experiments 288
15.4.7 Performance Results 288
15.5 Conclusions 294
References 294
16 Nanomechanical Characterization of Mineralized Tissues in the Oral Cavity 298
16.1 Introduction 298
16.2 Basic Data Analysis Protocol for Nanoindentation 299
16.3 Nanoindentation of Oral Mineralized Tissues 301
16.3.1 Sample Preparation 301
16.3.2 Hydration 301
16.3.3 Indenter Tips 302
16.3.4 Load Function and Data Analysis 303
16.3.5 Microstructural Influence 305
16.4 Conclusions 309
References 311
17 Nanoindentation Techniques for the Determination of Mechanical Properties of Materials in Dentistry 314
17.1 Introduction 314
17.2 Basic Information from the Load–Displacement Curves 316
17.2.1 Hardness and Elastic Modulus 316
17.2.2 Harmonic Contact Stiffness 317
17.2.3 Work of Indentation and Other Information from P–h Curves 318
17.2.4 Indenter Calibration 318
17.3 Characterization of Inelastic Properties 319
17.3.1 Stress–Strain Diagram 319
17.3.2 Yield Stress 320
17.4 Determination of Properties in Nonhomogeneous Bodies 321
17.4.1 Surface Layers and Coatings 321
17.4.2 Multiphase Microstructure 323
17.5 Characterization of Time-Dependent Load Response 323
17.6 Resistance Against Crack Propagation 326
17.7 Scratch Tests for the Evaluation of Friction and Wear Resistance 327
17.8 Devices for Nanoindentation 328
Acknowledgment 329
References 329
18 Nanocharacterization Techniques for Dental Implant Development 332
18.1 Measurement of the Topology of Nanostructures 333
18.1.1 Field Emission Scanning Electron Microscope 333
18.1.1.1 FESEM Case Studies 333
18.1.2 Scanning Probe Microscopy 334
18.1.2.1 Scanning Tunneling Microscope 334
18.1.2.2 Atomic Force Microscope 336
AFM Case Studies 336
18.1.3 Confocal Microscopy and Interferometry 337
18.1.3.1 Confocal Microscopy 337
Confocal Microscopy Case Studies 338
18.1.3.2 Interferometry 339
Interferometry Case Studies 340
18.2 Measurement of Nanostructure Internal Geometries 340
18.2.1 Transmission Electron Microscope 340
18.2.1.1 TEM Case Studies 340
18.2.2 Focused Ion Beam 342
18.2.2.1 FIB Case Studies 342
18.2.3 X-Ray Diffraction 343
18.2.3.1 XRD Case Studies 344
18.2.4 Mercury Porosimetry 344
18.2.4.1 Mercury Porosimetry Case Studies 346
18.3 Measurement of Composition of Nanostructures 346
18.3.1 Energy Dispersive X-Ray Spectroscopy 346
18.3.1.1 EDS Case Study 347
18.3.2 X-Ray Photoelectron Spectroscopy 347
18.3.2.1 XPS Case Study 348
18.3.3 Secondary Ion Mass Spectroscopy 348
18.3.3.1 SIMS Case Studies 349
18.3.4 Auger Electron Spectroscopy 349
18.3.4.1 AES Case Studies 350
18.4 Measurement of the Mechanical Properties of Nanostructures 351
18.4.1 Nanoscratch Testing 351
18.4.2 Nanohardness Test 351
18.5 Conclusions 352
References 353
19 Nanoparticulate Drug Delivery Systems for Oral Cancer Treatment 358
19.1 Introduction 358
19.2 Cancer Treatment Techniques 359
19.3 Mechanism of Action of Chemotherapeutic Agents 360
19.3.1 Prevention of Synthesis of Pre-DNA Molecule Building Blocks 360
19.3.2 Chemical Damage of DNA in the Cell Nuclei 360
19.4 Oral Cancer 360
19.5 TNM Classification of Tumors 361
19.6 Management of Oral Cancer 361
19.7 Nanoparticulate-Based Drug Delivery in Cancer Treatment 363
19.7.1 Gold Nanoparticles for Anticarcinogenic Drug Delivery 364
19.7.2 Liposomes in Oral Cancer Treatment 365
19.7.3 Magnetic Nanoparticles in Oral Cancer Treatment 367
19.7.4 Polymeric Micelles as Drug Delivery Systems 367
19.8 Conclusions 368
References 368
20 Carbon Nanotubes in Cancer Therapy and Drug Delivery 372
20.1 Introduction 372
20.2 Cellular Uptake of CNTs 374
20.3 CNTs as Carriers for Drug, Gene, and Protein 375
20.3.1 CNTs as Carriers of Anticancer Molecules 375
20.3.2 CNTs as Carriers of Immunoactive Compounds, Proteins, and Genetic Materials 378
20.3.3 CNTs as Carriers for Antimicrobial Molecules 382
20.3.4 Photothermal Therapy of Cancer Using CNTs 382
20.4 CNTs for Oral Cancer Therapy 383
20.5 Conclusions 384
References 385
21 Nanodiagnostics in Microbiology and Dentistry 390
21.1 Introduction 391
21.2 Nanomaterials 392
21.2.1 Applications of Nanomaterials 392
21.2.1.1 Sunscreens and Cosmetics 392
21.2.1.2 Composites 392
21.2.1.3 Clays 392
21.2.1.4 Coatings and Surfaces 392
21.2.1.5 Tougher and Harder Cutting Tools 393
21.3 Biomedical Applications of Nanotechnology and its Limitations 393
21.4 Nanotechnology Applications in Drug Delivery Systems, Nanodiagnostics, and Various Other Fields 393
21.4.1 Drug Delivery System 393
21.4.1.1 Nanobots and its Uses 393
21.4.1.2 Use of Nanorattles 394
21.4.2 Nanodiagnostics and Disease Prevention 394
21.4.2.1 Biosensors 394
21.4.2.2 Diagnosis Using Nanobots 395
21.4.2.3 Quantum Dots 395
21.4.2.4 Regenerative Medicine 396
21.4.3 Disease Prevention 396
21.4.3.1 Cardiovascular Interventions 396
21.4.3.2 Nanoparticles and the Blood–Brain Barrier: As Treatment Opportunity 396
21.4.3.3 Tissue Reconstruction 397
21.4.3.4 Medical Tools 397
21.4.4 Other Applications 397
21.4.4.1 Treatment of Injured Nerves 397
21.4.4.2 Nanocapsules 398
21.4.4.3 Nanotubes 398
21.4.4.4 Nanosomes 399
21.4.4.5 Nanowires 399
21.4.4.6 Needle-Free, Painless Vaccinations with Nanopatches 399
21.4.4.7 Nanomagnets Remove Pathogens from Blood 400
21.4.4.8 Nanocrystalline Silver 400
21.4.4.9 Nanospheres 401
21.5 Contribution of Microbiology to Nanotechnology 401
21.6 AFM Imaging of Microorganisms 402
21.6.1 Yeast 402
21.6.2 Bacteria 403
21.6.3 AFM Study of the Structure–Function Relationship of the Biofilm-Forming Bacterium Streptococcus mutans 403
21.6.4 Viruses 405
21.7 Nanoplasmonic Sensors Detecting Live Viruses 406
21.8 Nanodentistry 407
21.8.1 The Impact of Nanotechnology 407
21.8.1.1 Dynamic View of Dental Tissues 408
21.8.1.2 What Are We Really Bonding to? 409
21.8.1.3 “Small Is Beautiful” of Dental Science: Small Structures, Great Strength 409
21.8.1.4 Biofilm Formation and Treatment 410
21.8.2 Nanotechnology in Periodontics 411
21.8.2.1 Local Anesthesia and Hypersensitivity Cure 411
21.8.2.2 Natural Tooth Maintenance and Repair 411
21.8.2.3 Nanorobotic Dentifrice (Dentifrobots) 412
21.9 Conclusions 412
References 412
Index 416

Erscheint lt. Verlag 15.11.2011
Sprache englisch
Themenwelt Medizin / Pharmazie Gesundheitsfachberufe
Medizin / Pharmazie Zahnmedizin
Technik Elektrotechnik / Energietechnik
Technik Medizintechnik
ISBN-10 1-4557-7857-5 / 1455778575
ISBN-13 978-1-4557-7857-7 / 9781455778577
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 38,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 10,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich