Effective Computational Geometry for Curves and Surfaces (eBook)

eBook Download: PDF
2006 | 2006
XII, 344 Seiten
Springer Berlin (Verlag)
978-3-540-33259-6 (ISBN)

Lese- und Medienproben

Effective Computational Geometry for Curves and Surfaces -
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book covers combinatorial data structures and algorithms, algebraic issues in geometric computing, approximation of curves and surfaces, and computational topology. Each chapter fully details and provides a tutorial introduction to important concepts and results. The focus is on methods which are both well founded mathematically and efficient in practice. Coverage includes references to open source software and discussion of potential applications of the presented techniques.

1 Arrangements Efi Fogel, Dan Halperin, Lutz Kettner, Monique Teillaud, Ron Wein, Nicola Wolpert 1.1 Introduction1.2 Chronicles1.3 Exact Construction of Planar Arrangements 1.3.1Construction by Sweeping 1.3.2 Incremental Construction1.4  Software for Planar Arrangements1.4.1 The Cgal Arrangements Package1.4.2 Arrangements Traits 1.4.3 Traits Classes from Exacus 1.4.4An Emerging Cgal Curved Kernel1.4.5 How To Speed UpYour Arrangement Computation in Cgal 1.5 Exact Construction in 3-Space 1.5.1 Sweeping Arrangements of Surfaces 1.5.2Arrangements of Quadricsin 3D1.6 Controlled Perturbation: Fixed-Precision Approximation of Arrangements1.7 Applications 1.7.1 Boolean Operations for Conics 1.7.2 Motion Planning for Discs 1.7.3 Lower Envelopes for Path Verification in Multi-Axis NC-Machining1.7.4 Maximal Axis-Symmetric Polygon Containedin a Simple Polygon 1.7.5 Molecular Surfaces1.7.6 Additional Applications 1.8 Further Reading and Open problems2 Curved Voronoi Diagrams Jean-Daniel Boissonnat, Camille Wormser, Mariette Yvinec2.1 Introduction2.2 Lower Envelopes and Minimization Diagrams 2.3 Affine Voronoi Diagrams 2.3.1 Euclidean Voronoi Diagrams of Points2.3.2 Delaunay Triangulation2.3.3 PowerDiagrams2.4 Voronoi Diagrams with Algebraic Bisectors 2.4.1 Möbius Diagrams2.4.2 Anisotropic Diagrams 2.4.3Apollonius Diagrams2.5 Linearization 2.5.1Abstract Diagrams2.5.2 Inverse Problem 2.6 Incremental Voronoi Algorithms2.6.1 Planar Euclidean diagrams2.6.2 Incremental Construction2.6.3 The Voronoi Hierarchy 2.7 Medial Axis 2.7.1 Medial Axis and Lower Envelope 2.7.2 Approximation of the Medial Axis 2.8 Voronoi Diagrams in Cgal 2.9 Applications 3 Algebraic Issues in Computational Geometry Bernard Mourrain, Sylvain Pion, Susanne Schmitt, Jean-Pierre Técourt, Elias Tsigaridas, Nicola Wolpert 3.1 Introduction3.2 Computers and Numbers3.2.1 Machine Floating Point Numbers: the IEEE 754 norm........1193.2.2 Interval Arithmetic ......................................1203.2.3 Filters..................................................1213.3 Effective Real Numbers .......................................1233.3.1 Algebraic Numbers ......................................1243.3.2 Isolating Interval Representation of Real Algebraic Numbers 3.3.3 Symbolic Representation of Real Algebraic Numbers .........1253.4 Computing with Algebraic Numbers ............................1263.4.1 Resultant...............................................1263.4.2 Isolation................................................1313.4.3Algebraic Numbers of Small Degree ........................1363.4.4 Comparison.............................................1383.5 Multivariate Problems ........................................1403.6  Topology of Planar Implicit Curves.............................1423.6.1 The Algorithm from a Geometric Point of View .............1433.6.2 Algebraic Ingredients.....................................1443.6.3 How to Avoid Genericity Conditions .......................1453.7  Topology of 3d Implicit Curves.................................1463.7.1 Critical Points and Generic Position........................1473.7.2 The Projected Curves ....................................1483.7.3 Lifting a Point of the Projected Curve......................1493.7.4 Computing Points of the Curve above CriticalValues.........1513.7.5 Connecting the Branches .................................1523.7.6 The Algorithm ..........................................1533.8 Software ....................................................1544 Differential Geometry on Discrete Surfaces David Cohen-Steiner, Jean-Marie Morvan  4.1 Geometric Properties of Subsets of Points .......................1574.2  Length and Curvature of a Curve...............................1584.2.1 The Length of Curves ....................................1584.2.2 The Curvature of Curves .................................1594.3   The Area of a Surface.........................................1614.3.1 Definition of the Area ....................................1614.3.2 An Approximation Theorem ..............................1624.4 CurvaturesofSurfaces ........................................1644.4.1 The Smooth Case........................................1644.4.2 Pointwise Approximation of the Gaussian Curvature .........1654.4.3 From Pointwise to Local..................................1674.4.4 Anisotropic Curvature Measures...........................1744.4.5 o-samples on a Surface....................................1785 Meshing of Surfaces Jean-Daniel Boissonnat, David Cohen-Steiner, Bernard Mourrain, Günter Rote, Gert Vegter 5.1 Introduction: What is Meshing?................................1815.1.1 Overview ...............................................1875.2 Marching Cubesand Cube-Based Algorithms ....................1885.2.1 Criteria for a Correct Mesh Inside a Cube ..................1905.2.2 Interval Arithmetic for Estimating the Range of a Function ...1905.2.3 Global Parameterizability: Snyder’s Algorithm...............1915.2.4 Small Normal Variation ..................................1965.3 DelaunayRefinementAlgorithms...............................2015.3.1 Using the Local Feature Size ..............................2025.3.2 Using Critical Points.....................................2095.4 A Sweep Algorithm...........................................2135.4.1Meshing a Curve ........................................2155.4.2Meshing a Surface .......................................2165.5 Obtaining a Correct Mesh by Morse Theory .....................2235.5.1 Sweeping through Parameter Space ........................2235.5.2 Piecewise-Linear Interpolation of the Defining Function5.6 Research Problems............................................2276 Delaunay Triangulation Based Surface Reconstruction Frédéric Cazals, Joachim Giesen 6.1 Introduction.................................................2316.1.1 Surface Reconstruction ...................................2316.1.2Applications ............................................2316.1.3 Reconstruction Using the Delaunay Triangulation............2326.1.4 A Classification of Delaunay Based Surface Reconstruction Methods6.1.5 Organization of the Chapter ..............................2346.2 Prerequisites.................................................2346.2.1Delaunay Triangulations, Voronoi Diagrams and Related Concepts6.2.2 Medial Axis and Derived Concepts.........................2446.2.3 Topological and Geometric Equivalences....................2496.2.4 Exercises ...............................................2526.3 Overview of the Algorithms....................................2536.3.1Tangent Plane Based Methods ............................2536.3.2Restricted Delaunay Based Methods .......................2576.3.3Inside/Outside Labeling.................................2616.3.4Empty Balls Methods ....................................2686.4 Evaluating Surface Reconstruction Algorithms 6.5 Software ....................................................2726.6 Research Problems ...........................................2737 Computational Topology: An Introduction Günter Rote, Gert Vegter 7.1 Introduction.................................................2777.2 Simplicialcomplexes..........................................2787.3 Simplicial homology ..........................................2827.4 MorseTheory................................................2957.4.1 Smooth functions and manifolds ...........................2957.4.2 Basic Results from Morse Theory..........................3007.5 Exercises....................................................3107.6 Appendix:SomeBasicResultsfromLinearAlgebra...............3128 Appendix -Generic Programming and The Cgal Library Efi Fogel, Monique Teillaud .......................................3158.1 The Cgal OpenSourceProject ...............................3158.2 Generic Programming ........................................3168.3 Geometric Programming ......................................3188.4 Cgal ......................................................320References Index
 

Erscheint lt. Verlag 24.10.2006
Reihe/Serie Mathematics and Visualization
Mathematics and Visualization
Zusatzinfo XII, 344 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Mathematik / Informatik Mathematik Geometrie / Topologie
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte algorithms • CAGD • Computational Geometry • Computational topology • Computer-Aided Design (CAD) • Computer-Aided Manufacturing (CAM) • Computer Algebra • Construction • Differential Geometry • linear optimization • programming • Robotics • Surface approximation and meshing • Topology • Triangulation
ISBN-10 3-540-33259-6 / 3540332596
ISBN-13 978-3-540-33259-6 / 9783540332596
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich