Unsteady-state Fluid Flow -  E.J. Hoffman

Unsteady-state Fluid Flow (eBook)

Analysis and Applications to Petroleum Reservoir Behavior

(Autor)

eBook Download: PDF
1999 | 1. Auflage
473 Seiten
Elsevier Science (Verlag)
978-0-08-054345-1 (ISBN)
Systemvoraussetzungen
341,09 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The ubiquitous examples of unsteady-state fluid flow pertain to the production or depletion of oil and gas reservoirs. After introductory information about petroleum-bearing formations and fields, reservoirs, and geologic codes, empirical methods for correlating and predicting unsteady-state behavior are presented. This is followed by a more theoretical presentation based on the classical partial differential equations for flow through porous media.
Whereas these equations can be simplified for the flow of (compressible) fluids, and idealized solutions exist in terms of Fourier series for linear flow and Bessel functions for radial flow, the flow of compressible gases requires computer solutions, read approximations. An analysis of computer solutions indicates, fortuitously, that the unsteady-state behavior can be reproduced by steady-state density or pressure profiles at successive times. This will demark draw down and the transition to long-term depletion for reservoirs with closed outer boundaries.
As an alternative, unsteady-state flow may be presented in terms of volume and surface integrals, and the methodology is fully developed with examples furnished. Among other things, permeability and reserves can be estimated from well flow tests.
The foregoing leads to an examination of boundary conditions and degrees of freedom and raises arguments that the classical partial differential equations of mathematical physics may not be allowable representations.
For so-called open petroleum reservoirs where say water-drive exists, the simplifications based on successive steady-state profiles provide a useful means of representation, which is detailed in the form of material balances.


Unsteady-State Fluid Flow provides:
&bull, empirical and classical methods for correlating and predicting the unsteady-state behavior of petroleum reservoirs
&bull, analysis of unsteady-state behavior, both in terms of the classical partial differential equations, and in terms of volume and surface integrals
&bull, simplifications based on successive steady-state profiles which permit application to the depletion of both closed reservoirs and open reservoirs, and serves to distinguish drawdown, transition and long-term depletion performance.


The ubiquitous examples of unsteady-state fluid flow pertain to the production or depletion of oil and gas reservoirs. After introductory information about petroleum-bearing formations and fields, reservoirs, and geologic codes, empirical methods for correlating and predicting unsteady-state behavior are presented. This is followed by a more theoretical presentation based on the classical partial differential equations for flow through porous media.Whereas these equations can be simplified for the flow of (compressible) fluids, and idealized solutions exist in terms of Fourier series for linear flow and Bessel functions for radial flow, the flow of compressible gases requires computer solutions, read approximations. An analysis of computer solutions indicates, fortuitously, that the unsteady-state behavior can be reproduced by steady-state density or pressure profiles at successive times. This will demark draw down and the transition to long-term depletion for reservoirs with closed outer boundaries.As an alternative, unsteady-state flow may be presented in terms of volume and surface integrals, and the methodology is fully developed with examples furnished. Among other things, permeability and reserves can be estimated from well flow tests.The foregoing leads to an examination of boundary conditions and degrees of freedom and raises arguments that the classical partial differential equations of mathematical physics may not be allowable representations. For so-called open petroleum reservoirs where say water-drive exists, the simplifications based on successive steady-state profiles provide a useful means of representation, which is detailed in the form of material balances.Unsteady-State Fluid Flow provides:* empirical and classical methods for correlating and predicting the unsteady-state behavior of petroleum reservoirs* analysis of unsteady-state behavior, both in terms of the classical partial differential equations, and in terms of volume and surface integrals* simplifications based on successive steady-state profiles which permit application to the depletion of both closed reservoirs and open reservoirs, and serves to distinguish drawdown, transition and long-term depletion performance.

Front Cover 1
Unsteady-state Fluid Flow: Analysis and Applications to Petroleum Reservoir Behavior 4
Copyright Page 5
Contents 8
Preface 6
Part I: Reservoir Characteristics 12
CHAPTER 1. PETROLEUM RESERVES AND THEIR ESTIMATION 14
1.1 Characterization by Unsteady-State Behavior 15
1.2 Origins of Petroleum 16
1.3 Techniques for Estimating Reserves 24
1.4 Reservoirs and Geologic Provinces 27
CHAPTER 2. PRESSURE/PRODUCTION BEHAVIOR PATTERNS 36
2.1 Liquids versus Gases 36
2.2 Maintenance of Production 38
2.3 Reservoir Pressures 39
2.4 Reserves and Depletion Times 41
CHAPTER 3. PRESSURE/PRODUCTION DECLINE CORRELATIONS 52
3.1 Reservoir P-V-T Behavior 52
3.2 Geometric Production Decline 55
3.3 Production-Time Decline 59
3.4 Production Loss Ratio 60
3.5 Pressure Decline 78
Part II: The Representation of Flow Through Porous Media 84
CHAPTER 4. CONCEPTS OF FLOW 86
4.1 Unsteady-State Flow and Compressibility 86
4.2 Flow Systems and Dissipative Effects 88
4.3 Darcy's Law 92
CHAPTER 5. THE CLASSIC DIFFERENTIAL EQUATIONS FOR FLOW THROUGH POROUS MEDIA 100
5.1 Continuity Equation 100
5.2 Steady-State Solutions 105
5.3 Analytic Solutions for Unsteady-State Flow 107
5.4 Computer Solutions 119
CHAPTER 6. INTEGRAL FORMS FOR DESCRIBING UNSTEADY-STATE FLOW 124
6.1 Volume and Surface Integrals 124
6.2 The Depletion Problem 129
6.3 Permeability Form 139
6.4 Production Period 152
6.5 Prediction of Production 153
6.6 Repressurization 157
CHAPTER 7. TWO-PHASE AND MULTIPHASE FLOW: GAS, OIL, AND WATER 166
7.1 Concurrent Two-Phase Flow 168
7.2 Multiphase Flow 176
7.3 Immiscible and (Partially) Miscible Drives 176
7.4 Enhanced Oil Recovery 177
Part III: Reduction to Practice 182
CHAPTER 8. STEADY-STATE: PRODUCTIVITY TESTS 184
8.1 Determination of Producing Radius 186
8.2 Productivity Index 192
8.3 Back-Pressure Tests 194
8.4 Departure from Ideal Behavior 198
CHAPTER 9. AN EVALUATION OF UNSTEADY-STATE SOLUTIONS FOR DRAWDOWN AND TRANSITION 204
9.1 Summary Statement 204
9.2 Unsteady-State Solutions for Drawdown 209
9.3 Experimental Comparisons 217
CHAPTER 10. GASEOUS UNSTEADY-STATE RADIAL FLOW BEHAVIOR FROM THE CALCULATED RESULTS OF BRUCE ET AL. 242
10.1 Overview 242
10.2 Detailing and Analysis of the Results of Bruce et al. 246
10.3 Closed versus Open Systems 276
10.4 Determination of Reservoir Extent and Permeability 278
10.5 Back-Pressure Correlation 289
10.6 Transitional Behavior 291
CHAPTER 11. A CRITIQUE OF BOUNDARY CONDITIONS, DEGREES OF FREEDOM AND DARCY'S LAW 298
11.1 Problem and Expediencies 298
11.2 Pressure Gradient at the closed Boundary 303
11.3 Degrees of Freedom 306
11.4 Darcy's Law in Radial Flow 325
11.5 Systems in Chaos 329
11.6 Steady-State Profiles 330
CHAPTER 12. THE RESULTS OF BRUCE ET AL. IN TERMS OF INTEGRAL FORMS 340
12.1 Review of the Derived Relationships and Correlations 340
12.2 Relation to the Results of Bruce et al. 345
CHAPTER 13. THE COMPUTATION OF RESERVES AND PERMEABILITY FROM STABILIZED FLOW-TEST INFORMATION (Back-Pressure Tests) 374
13.1 Reserves and Permeability Calculations 374
13.2 Computer Applications 384
Part IV: The use of Steady-State Profiles for Unsteady-State Flow 402
CHAPTER 14. APPROXIMATE SOLUTIONS DURING DRAWDOWN AND LONG-TERM DEPLETION 404
14.1 Compressible Liquids 404
14.2 Compressible Gases 423
14.3 Transition (or Stabilization) between Drawdown and Long-Term Depletion 429
14.4 Estimation of Reservoir Extent and Reserves 430
CHAPTER 15. REPRESENTATION OF WATER DRIVES 432
15.1 Infinite Reservoirs (with Drive) 432
15.2 Finite Reservoirs (with Drive) 434
15.3 Gaseous Flow and Displacement 438
15.4 Field Histories 439
CHAPTER 16. PRODUCTION-DECLINE BEHAVIOR 442
16.1 Effect of Flow up through the Well Tubing 442
16.2 Decline of Production Rate 447
AFTERWORD 454
GLOSSARY 458
SYMBOLS 464
INDEX 474

PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quantenmechanik • Spektroskopie • Statistische Thermodynamik

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
De Gruyter (Verlag)
54,95
Thermodynamik • Kinetik • Elektrochemie

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
De Gruyter (Verlag)
59,95

von Peter W. Atkins; Julio de Paula; James J. Keeler

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
76,99