Graph Theory in Memory of G.A. Dirac (eBook)
516 Seiten
Elsevier Science (Verlag)
978-0-08-086781-6 (ISBN)
The forty-two papers are all concerned with (or related to) Dirac's main lines of research. A number of mathematicians pay tribute to his memory by presenting new results in different areas of graph theory. Among the topics included are paths and cycles, hamiltonian graphs, vertex colouring and critical graphs, graphs and surfaces, edge-colouring, and infinite graphs.
Some of the papers were originally presented at a meeting held in Denmark in 1985. Attendance being by invitation only, some 55 mathematicians from 14 countries participated in various lectures and discussions on graph theory related to the work of Dirac. This volume contains contributions from others as well, so should not be regarded only as the proceedings of that meeting. A problems section is included, as well as a listing of Dirac's own publications.
This volume is a tribute to the life and mathematical work of G.A. Dirac (1925-1984). One of the leading graph theorists, he developed methods of great originality and made many fundamental discoveries.The forty-two papers are all concerned with (or related to) Dirac's main lines of research. A number of mathematicians pay tribute to his memory by presenting new results in different areas of graph theory. Among the topics included are paths and cycles, hamiltonian graphs, vertex colouring and critical graphs, graphs and surfaces, edge-colouring, and infinite graphs.Some of the papers were originally presented at a meeting held in Denmark in 1985. Attendance being by invitation only, some 55 mathematicians from 14 countries participated in various lectures and discussions on graph theory related to the work of Dirac. This volume contains contributions from others as well, so should not be regarded only as the proceedings of that meeting. A problems section is included, as well as a listing of Dirac's own publications.
Front Cover 1
Graph Theory in Memory of G.A. Dirac 4
Copyright Page 5
Contents 8
Preface 6
Chapter 1. Gabriel Andrew Dirac 16
Chapter 2. Hamilton Cycles in Metacirculant Graphs with Prime Power Cardinal Blocks 22
Chapter 3. The Edge-Distinguishing Chromatic Number of Paths and Cycles 32
Chapter 4. On the 2-Linkage Problem for Semicomplete Digraphs 38
Chapter 5. The Fascination of Minimal Graphs 54
Chapter 6. Optimal Paths and Cycles in Weighted Graphs 68
Chapter 7. A Note on Hamiltonian Graphs 86
Chapter 8. Uniqueness of the Biggs-Smith Graph 90
Chapter 9. Some Complete Bipartite Graph – Tree Ramsey Numbers 94
Chapter 10. The Edge-Chromatic Class of Graphs with Maximum Degree at Least IVI – 3 106
Chapter 11. On some Aspects of my Work with Gabriel Dirac 126
Chapter 12. Bandwidth versus Bandsize 132
Chapter 13. Circumference and Hamiltonism in K 1,3-Free Graphs 146
Chapter 14. The Prism of a 2-Connected, Planar, Cubic Graph is Hamiltonian 156
Chapter 15. A Note Concerning some Conjectures on Cyclically 4-Edge Connected 3-Regular Graphs 186
Chapter 16. On Connectivity Properties of Eulerian Digraphs 194
Chapter 17. Some Problems and Results on Infinite Graphs 210
Chapter 18. On a Problem Concerning Longest Circuits in Polyhedral Graphs 226
Chapter 19. Interpolation Theorems for the Independence and Domination Numbers of Spanning Trees 236
Chapter 20. Ein zum Vierfarbensatz Äquivalenter Satz der Panisochromie 244
Chapter 21.The Existence Problem for Graph Homomorphisms 270
Chapter 22. On Edge-Colorings of Cubic Graphs and a Formula of Roger Penrose 282
Chapter 23. Longest ab– Paths in Regular Graphs 296
Chapter 24. On Independent Circuits in Finite Graphs and a Conjecture of Erdös and Pósa 314
Chapter 25. Contractions to Complete Graphs 322
Chapter 26. Triangulated Graphs with Marked Vertices 326
Chapter 27. On a Problem upon Configurations Contained in Graphs with Given Chromatic Number 340
Chapter 28. On Disjoint Paths in Graphs 348
Chapter 29. Conjecture de Hadwiger: Un Graphe K-Chromatique Contraction-Critique n’est pas K-Régulier 356
Chapter 30. A Theorem on Matchings in the Plane 362
Chapter 31. Removing Monotone Cycles from Orientations 370
Chapter 32. Disentangling Pairings in Trees 378
Chapter 33. Colour-Critical Graphs with Vertices of Low Valency 386
Chapter 34. About the Chromatic Number of 1-Embeddable Graphs 412
Chapter 35. Problems and Conjectures in the Combinatorial Theory of Ordered Sets 416
Chapter 36. A Proof of Kuratowski’s Theorem 432
Chapter 37. Finite and Infinite Graphs whose Spanning Trees are Pairwise Isomorphic 436
Chapter 38. Bridges of Longest Circuits Applied to the Circumference of Regular Graphs 452
Chapter 39. On a Standard Method Concerning Embeddings of Graphs 468
Chapter 40. Construction of Critical Graphs by Replacing Edges 488
Chapter 41. A Brief History of Hamiltonian Graphs 502
Chapter 42. Erinnerungen an Gabriel Dirac in Hamburg 512
Chapter 43. Hamilton Paths in Multipartite Oriented Graphs 514
Chapter 44. Problems 530
Erscheint lt. Verlag | 1.12.1988 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
Mathematik / Informatik ► Mathematik ► Finanz- / Wirtschaftsmathematik | |
Technik | |
ISBN-10 | 0-08-086781-2 / 0080867812 |
ISBN-13 | 978-0-08-086781-6 / 9780080867816 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich